

.

BusinessLink Software Support

Strategi
HSM Programmer’s Guide

Version v1r8

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

2

This manual applies to Strategi version v1r8 and later and was last revised in January, 2002.

ADVANCED BusinessLink Corp. may have patents and/or patent pending applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

Copyright 1997, 1998, 1999, 2000 ADVANCED BusinessLink Corp. and Advanced BusinessLink (Australia) Pty.
Ltd. (formerly ADVANCED Systems Development Pty. Ltd). All rights reserved. This manual may not be reproduced
in whole or in part in any form without the prior written consent of Advanced BusinessLink (Australia) Pty. Ltd or its
authorized agent. Primary Authorized Agent in the United States of America is ADVANCED BusinessLink
Corporation, Kirkland, WA, USA, 1-425-602-4777.

Some information in this manual is used by permission of and is copyright 1996 by Network Solutions, Inc.

Every effort has been made to ensure the accuracy of this manual. However, ADVANCED BusinessLink Corp. and
Advanced BusinessLink (Australia) Pty. Ltd make no warranties with respect to this documentation, and shall not be
liable for any errors, or for incidental or consequential damages in connection with the performance or use of this
manual, or the examples pertaining to products and procedures as described herein. The information in this manual is
subject to change without notice.

Other trademarks, trade names and brand and product names used in this manual are trademarks or registered trademarks
of their respective holders.

Printed in the United States of America.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

3

A Note to Readers of this Manual

Built on the premise that technological solutions are useless unless they provide real-world business benefits, Strategi
has been architected to provide your organization a foundation to enable creative breakthrough e-business solutions.
This manual has been designed to enhance your usability experience with Strategi as well.

The latest versions of this document and other Technical Support Bulletins can be downloaded from ADVANCED
BusinessLink Corp.’s Support Website, http://support.businesslink.com.

You may print this in duplex format using Adobe’s Acrobat Reader, which is available for download from
http://www.adobe.com/products/acrobat/readstep.html.

With some installs of Adobe Acrobat, your printer may not resolve the characters correctly, and once printed, all
characters will appear as rectangles or as symbols. If this happens, you will need to select “Print as image” from the
Acrobat print dialogue. This will cause the print to occur correctly.

If you have any questions, comments or suggestions, please feel free to contact us via email at
support@businesslink.com.

Sincerely,

BusinessLink Software Support

http://support.businesslink.com/
http://www.adobe.com/products/acrobat/readstep.html

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

4

Contents

A Note to Readers of this Manual 3

Overview 7
Strategi High Speed Messaging ...7
HSM's Relevance to Your Business...7
Client/Server Interaction ..8
HSM System Requirements ...8

AS/400 Requirements ..8
PC Requirements ...8

A Practical Example 9
Combining Theory with a Working HSM Application..9
Client/Server Interaction ..9
Server Logic...11

Server Design 12
Design Overview..12
Receiving & Processing Client Requests ...13
Design Objectives ..14
HSM Programming Specification ..14
Server Message Elements & Interface Calls ..16
Server Behavior on Error ...18

HTML Implementation 19
Overview..19
Visitor Counter Example..19
Guest Book Example..21
Stock Inquiry Example...21

HTML Reference 23
HTML Keywords ...23

<HSM NAME=field_name> </HSM> ..23
<HSMBLOCK NAME=block_name> </HSMBLOCK>..24

SHTML & Server Side Includes ..25
.SHTML and .SHTM File Extensions ...25
Server Side Includes ..26

HSM Resource File Reference 27
File Construct ...27

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

5

Groups..27
[SERVER REQUEST] ..27
[REPLY] ..27
[DO]...27
[BLOCK] ...27
[SUBMIT BUTTON] ..28

Keywords and Values by Group ..28
[SERVER REQUEST] ..28
[REPLY] ..28
[DO]...29
[BLOCK] ...29
[SUBMIT BUTTON] ..29

Additional Keywords and Considerations..30
Conditions..30
Condition Criteria ..30
Explicitly Setting Field Values ..31
Exporting Embedded Values ...31
Array Elements ..32
Naming Conventions ...32
Automatic HSM Start Position ..32
Special Values ...33
INDEX Special Values ..34
HTTP Header Special Values ..35
Conditional [DO] ...35
Switching to Another File ..36
Values in Link URLs ...36
Returning HTTP Messages ..37
Error Messages ..37
HTTP Error redirection through a URL...38

HSM File Upload & Pushfeed 39
Strategi Pushfeed..39
Push OPcodes (For Strategi Pushfeed)...40

LSTPUSH..40
DLTPUSH ...41

HSM File Upload ...42
File Operation and Property OpCodes (For HSM File Upload)...44

CHGPROH ..44
CPYHFIL...44
DLTHFIL...45
FILEINFO..45
GETPROH...46
MOVHFIL ...46
SETIFSAUT ..47
SETPROH..48

Distributed HSM Servers (DHSM) ..49

Other Topics 52
Other Resources ...52

SGIEXAMPLE ..52
http://support.businesslink.com ...52

Additional Questions..52

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

6

Appendix 1, Converting Old Servers 54
Principle Benefits ...54
COMPATABILITY INTERFACE Conversion ...55
ILE INTERFACE Conversion ...57

Appendix 2, Additional HSM Administrative Features 60
HSM Authorities ..60
HSM Performance Monitoring...60
Customized Login Pages..61
HSM Server Packaging & Installation Commands ..62

Appendix 3, Java HSM Server Documentation 63
Class com.businesslink.sgi.api.hsm.HsmClient ...63

Constructors ...63
Class com.businesslink.sgi.api.hsm.HsmClientDetails ..64

Methods ...64
Class com.businesslink.sgi.api.hsm.HsmClientRequest ..65

Constructors ...65
Methods ...65

Class com.businesslink.sgi.api.hsm.HsmData ...72
Constructors ...73
Methods ...73

Class com.businesslink.sgi.api.hsm.HsmEscape..80
Constructors ...80
Variables ..81
Methods ...81

Class com.businesslink.sgi.api.hsm.HsmServerRequest..81
Methods ...81

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

7

Overview

Strategi High Speed Messaging
Strategi High Speed Messaging (HSM) is a groundbreaking new communications technology. As the foundation for
high-speed transaction processing, HSM frees you from the pain of developing and testing CGI-BIN alternatives and
provides a solid, integrated business solution.

Packaged as high performance “middleware”, High Speed Messaging blends seamlessly with Strategi to connect remote
clients to your AS/400 over the Internet.

HSM's Relevance to Your Business
High Speed Messaging has been designed to enable your business to move from yesterday's legacy applications into
today's (and tomorrow’s) interactive applications. Your customers and staff need no longer put up with the awkward
key-mappings forced on them by a 5250 interface, the unnatural GUI behavior necessitated by a screen scraper, or the
slow response times with unreliable connectivity inherent in “do-it-yourself” communications programming.

Instead of “Green Screens“, “Screen Scrapers“ or detailed communications programming, Strategi’s High Speed
Messaging makes it possible to produce striking graphical applications that communicate effortlessly with your AS/400.

HSM utilizes the AS/400 as a powerful back-end server while providing total control over the client interface, giving you
the freedom to create stunning, high-performance applications that “stand out in the crowd” and leave your customers
and your competition wondering how you achieved them.

Strategi’s High Speed Messaging allows authorized users to converse with your AS/400 via the Internet from any Web
browser, without actually letting the user onto your AS/400.

How? HSM acts as a “middleman” between the Internet and your AS/400, limiting the user’s interaction with the 400 to
the tasks you have programmed into your HSM server. This means that at no time can the end user have any interaction
with your system that the HSM server has not already been designed to allow. And, using Strategi’s HTTP
authentication, you can further limit the user’s interaction by accessing their registration number for authority
verification.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

8

Client/Server Interaction
Strategi includes a unique delivery transport for High Speed Messaging. Via HTML, Strategi provides a client/server
architecture for seamless and communications-layer-transparent messaging with an AS/400 program. A web page on
your Strategi-hosted web site makes a call to the Strategi subsystem on the AS/400. Almost instantly, Strategi relays the
message to your HSM application on the AS/400. Then, your HSM application processes your request and calls the reply
API. Strategi then handles relaying the AS/400 program’s reply back to the next web page.

HSM System Requirements

AS/400 Requirements

• OS/400 V4R2M0 or later running Strategi.
• LAN connections as required by Strategi.
• Approximately 45 MB of AS/400 disk space to run Strategi.

PC Requirements

• Web browser

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

9

A Practical Example

Combining Theory with a Working HSM Application
The following example is a basic HSM implementation, yet displays striking results.

The software “Client” is written with HTML and HSM Resource files and runs in a web browser. It communicates with
the AS/400 by calling functions in Strategi’s communications routines. The “client” has no specific knowledge of the
connection, the server logic or the AS/400; Strategi handles all that in the background.

The “Server” is can be written in RPG, CL, or any other programming language on an AS/400. It is loaded, run and
managed by Strategi, and has no knowledge of how it connects to clients or even how client requests get sent to the
HSMRequest() API. Further, it has no program logic or knowledge of how clients get the replies it sends with the
HSMReply() API, or how the correct reply gets back to the correct client. It doesn't need to; Strategi takes care of
everything.

Client/Server Interaction
The following demonstrates a typical interaction of HTML client and server. Some detail has been omitted to simplify
the explanation, since the objective here is to provide a feel for HSM interaction rather than detailed program logic or
client HTML programming.

Please be aware that when we speak of a “client” in Strategi, it is somewhat of a misnomer, as there is no software-
installed-on-the-PC “client” per se, other than the browser. We refer to the HTML web page served up by the web
browser as the “client”, in order to keep the “client/server” terminology in order.

After going to the “client’s” web page, the main form (pictured below) is displayed, then:

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

10

The user selects an item in the list and presses the “Details” button - this results in a call to HSMRequest(), with an
OPcode of GETITEM. The item number selected is passed as a field in the DataBlock. The server returns a reply
DataBlock via HSMReply(), which is then parsed into fields by the HSM Resource File. The fields are then filled in the
HTML template, to be displayed in the list box (see example below). This step could be repeated several times as the
user examines pricing and availability for different items.

If you look at the source HTML for any web page returned with AS/400 data in it, and compare it with the raw
/homepage.htm, you can see how the AS/400, through the Strategi HSM server, seamlessly inserts the appropriate data
from the HSMReply() into the HTML.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

11

In this example, all data, including the list box of items and the pricing values, are coming live from the AS/400. No
data is stored locally on the PC.

The end-user has no idea the data is actually on the AS/400, regardless of how far away the AS/400 actually is, since
performance is similar to other PC-based applications (where data is actually stored locally on the PC hard disk).

And of course, logic for pricing is retained on the AS/400, rather than being re-coded in an unfamiliar PC language.

Server Logic
The server logic can be pseudo-coded as:

Do
Receive Request
if OPcode = “GETLIST“

Read List of Items from Master File
Put item list into reply structure
End If

If OPcode = “GETITEM“
Validate Item number passed from Client
Read Item Warehouse record to get stock, $, etc.
Put values into reply structure
End If

[.. test for & process *STOP & *PING ..]
Send Reply
Loop

The server logic is abstracted, so it can simultaneously interact with several clients. It is basic “transaction processing”,
and retains no client specific data between requests.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

12

Server Design

Design Overview
Server design is fairly easy to sketch out. A minimum server is about a dozen lines of CL code, and is a *PGM object
expecting one 10-character parameter, the server name.

The Server program then receives, processes and replies to requests received from client(s).

Prior to being used, the HSM Server definition must be created, at which time its creator designates a Server Name by
which the HSM client will request its services (please refer to the Strategi Administration Menu, “Work with HSM
Servers“, for examples).

The server is essentially a transaction processor. Its specification could broadly be pseudo-coded as:

Main Line
Clear STOP-FLAG
While STOP-FLAG is not set {
Clear Request & Reply Elements
Receive Request

Test OPcode {
OPcode = "*PING" {

Place server description in reply data structure
Return *PING OPcode
}

OPcode = "*STOP” {
if (Client Type is "*CONTROL") {

Move "*STOPPED" to reply OPcode
Set STOP-FLAG.
}

}
OPcode = “(Application Specific OPcode)” {

Application processing
}

If no OPcodes Recognized {
Move "*ERROR" to reply OPcode
Move error detail to reply data
}

}
Send Reply
}

Exit PGM

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

13

Receiving & Processing Client Requests
Certain OPcodes have a system-defined meaning:

*STOP
Indicates server shutdown is being requested by Strategi, either in response to a system administrator request or to a
general system shutdown.

Servers should only respond to stop it the client code of the request is “*CONROL”, which will only be set when the
server is shut down properly. Servers must respond to *STOP by setting the reply OPcode of “*STOPPED”, and also
setting an indicator such that, after the reply was sent, the loop would break and the program can exit.

*PING
Servers must reply to *PING requests with a corresponding OPcode of *PING, and a DataBlock containing brief text
describing the server's function, purpose or summary of services, and a version number (which allows the client to
“ping” the server and check that is connecting to a server it is compatible with).

Strategi does not dictate the length of this text. Since it is used on many list-type displays, and may be used by the
client's programs to display to end users, it is recommended the text be limited to 40 characters, to facilitate practical
screen design. The ping reply text can be used as a descriptive title to the end user, letting them see exactly what server
and version of that server they are connecting to.

*ERROR
In the event that the server is passed an OPcode which it does not check for, its catchall reply should be *ERROR.
*ERROR should reply in a very specific manner. The first seven bytes of the reply data should contain the server name,
followed by one space, and then up to 200 bytes of description about the error, for instance “The OPcode was not
recognized”.

*NOSERVER
Strategi will return this OPcode if the server requested is not currently running. This should not be included in your
server program code, since this should never be returned if the server is actually running.

All other OPcodes are user defined, predetermined at the time of Server design and used by client application. The only
restrictions on naming are that the OPcode can be no longer than ten characters, and cannot start with “*”. “*” Is
reserved for Strategi’s required OPcodes, present and future.

A strict request/reply protocol must be observed between Client and Server. This means for every Client request there is
a resulting reply from the Server.

Data transferred between the Client and Server is automatically translated between EBCDIC and ASCII by Strategi.
Because of this, data should be restricted to Alpha/Numeric and basic symbols (!, @, #, ...)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

14

Design Objectives
You should keep the following objectives in mind when considering HSM Server design:

1. “Black Box” the Strategi system (and therefore the AS/400) from the outside world. Never require
clients to have specific knowledge of underlying file structures, database formats, etc.

For example, instead of requiring clients to ask for data from specific files (such as getting “10
item master records”), abstract these requests to just ask for the objects (“get 10 items”).

2. Design the server to be “stateless”, i.e., not retaining specific knowledge from request to request. This
will allow it to be safely “Parallel-Tasked”.

For example, if the client is creating an order which may be comprised of several transactions then
requires final confirmation of the order, have the server return a “handle” to the client following a
“Create Order” request.

This may actually be an order header key but to the client, it is just an abstract handle, which it is
required to pass to the server on subsequent requests (“Add Line Item”, etc.). The server can then
safely deal with multiple clients, and need not be concerned with continuity of conversation, since
it will not have any client-specific variables stored beyond the life of an individual transaction.

3. Rationalize client requirements to a set of structured requests, which the server (or servers) can reply
to individually.

For example, the “Hot Steel” demonstration earlier in this manual structured an entire product
inquiry to just two structured requests: GETLIST and GETITEM.

HSM Programming Specification

HSMRCVRQS & hsm_rcvrqs()
This function has the spec below. There are additional optional fields that provide extra information on the request.

HSM_BOOL hsm_rcvrqs(
HSM_BYTE *opcfld, /* HSM_SIZOPC - Operation Code */
void *dtafld, /* HSM_SIZDTA - Operation Data */
HSM_DEC4 *dtalenp, /* - Operation Data Length */
HSM_BYTE *clttyp, /* HSM_SIZTYP - Client Type */
HSM_BYTE *cltfld, /* HSM_SIZCLT - Client ID */
...);
Optional Parms:
HSM_BYTE *locfld /* HSM_SIZLOC - Client Location */
HSM_BYTE *usratr /* HSM_SIZUSRA - User Attribute */

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

15

Calls to hsm_svropt() are used to enable the optional fields - the fields are expected in the same order as the calls to
hsm_svropt(). Hence if a server was interested only in the user attribute, a single call to hsm_svropt() would be
required:

hsm_svropt("SETRQSPARM", "USRATR");
hsm_rcvrqs(OPcode,data,length,client_type,client_id,user_attr);

But if the location and user attribute were desired:

hsm_svropt("SETRQSPARM", "CLTLOC")
hsm_svropt("SETRQSPARM", "USRATR");
hsm_rcvrqs(OPcode,data,length,client_type,client_id,client_location,user_attr);

And the order is defined by the order of calls to hsm_svropt(), so:

hsm_svropt("SETRQSPARM", "USRATR");
hsm_svropt("SETRQSPARM", "CLTLOC");
hsm_rcvrqs(OPcode,data,length,client_type,client_id,user_attr,client_location);

And, lastly, if the defaults are used:

hsm_rcvrqs(OPcode,data,length,client_type,client_id);

In RPG the above calls to hsm_svropt() look like:

CALLB 'HSMSVROPT'
PARM 'SETRQSPARM' TMPCHR20 20
PARM 'CLTLOC' TMPCHR500 500

HSMSVROPT & hsm_svropt()
These functions (for RPGLE & CLE respectively) generically enable various server-side options. The interpretation of
optval is dependent on optkwd. The value of optrtn will be '1' if option setting succeeds, and '0' if option setting fails.
How and if an option setting fails is dependent upon the option. Keywords and values are case-insensitive. This
function is available with an ILE interface only. As with other

HSMSVROPT
HSM_BYTE OPTKWD[20]
HSM_BYTE OPTVAL[500]
HSM_BYTE OPTRTN[1]

hsm_svropt(
HSM_BYTE *optkwd,
HSM_BYTE *optval,
HSM_BYTE *optrtn);

KEYWORD VALUE
--------------------- -----------------------------
SETRCVTMO Number of seconds
SETRQSPARM Parameter Name
CCSID Set CCSID for properties, request and reply
PRPCCSID Set CCSID for properties
RQSCCSID Set CCSID for requests
RPYCCSID Set CCSID for replies

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

16

SETRCVTMO: Enables the hsm_rcvrqs() function to periodically return with OPCODE *TIMEOUT. This OPcode
should NOT be replied to. The server can make periodic checks before returning to the hsm_rcvrqs() all. This value is -
1 by default, indicating no timeout.

SETRQSPARM: Enables optional request fields. To define a different set of optional fields use one or more calls to set
this server option. The value is a literal field name: "CLTLOC" or "USRATR". Only one set of calls is permitted for
SETRQSPARM. Attempting to do a SETRQSPARM after having done an hsm_rcvrqs() will generate an error
(terminating the server).

User Attribute
The server configuration can now define a user attribute. When a Strategi user accesses the server the new user-attribute
field is populated with the contents of the specified user attribute for that user (blank if no attribute defined). In this way
our customers can automatically and efficiently associate users with an external reference for their server. The user
attribute is picked up on the first request in a chain; all subsequent requests pass this original user attribute along. The
request chain may include DHSM requests to a peer system. (i.e. For: [client server-a -> server-b -> server-c] The user-
attribute is only picked up for the request to server-a; server-b and server-c both get this original attribute).

Client Location
With the introduction of DHSM peer networking, it is possible that the request did not originate from this system. The
new optional field CLTLOC allows the server to know the peer system code that the request originated from. When the
request originated from the same system, *LOCAL is passed in this field.

Note that this system code is taken from the first remote system, so if [client-> server-a -> server-b] and if client, server-
a and server-b are all on different systems, the client location is the system code defined on the system for server-a. In
such a setup (which would be obscure and probably unnecessary as client could probably talk directly to server-b) the
peer tables should use the same system code on all systems.

Server Message Elements & Interface Calls

Message Elements

Receiving a Request

OPcode 10 The request operation code
Data 9999 The request data
Data Length 4.0 The request data length
Client Type 10 The type of client making the request
Client 10 The client making the request

Sending a Reply
OPcode 10 The reply operation code
Data 9999 The reply data
Data Length 4.0 The reply length

Server Interface Calls

There are two bound interface sets, and two external interface sets.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

17

Bound Set 1, for C programs
hsm_rcvrqs(

HSM_BYTE *OPcode, /* 10 */
void *data, /* 9999 */
decimal(4) *data_len
HSM_BYTE *client_type, /* 10 */
HSM_BYTE *client, /* 10 */
);

hsm_sndrpy(
HSM_BYTE *OPcode, /* 10 */
void *data, /* 9999 */
decimal(4) data_len
);

Bound Set 2, for ILE RPG/CLP programs

HSMRCVRQS
OPCODE *CHAR 10
DATA *CHAR 9999
DATA_LEN *DEC 4
CLIENT_TYPE *CHAR 10
CLIENT *CHAR 10

HSMSNDRPY
OPCODE *CHAR 10
DATA *CHAR 9999
DATA_LEN *DEC 4

External Set 1, for OPM Programs
HSMRCVRQ

OPCODE *CHAR 10
DATA *CHAR 9999
DATA_LEN *DEC 4
CLIENT_TYPE *CHAR 10
CLIENT *CHAR 10

HSMSNDRP
OPCODE *CHAR 10
DATA *CHAR 9999
DATA_LEN *DEC 4

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

18

External Set 2, for old-specification OPM server programs

XRCVDTAQ
DTAQ *CHAR 10 /* THIS PARM IGNORED BY HSM */
LIB *CHAR 10 /* THIS PARM IGNORED BY HSM */
RCDLEN *DEC 5 /* THIS PARM IGNORED BY HSM */
RCD *CHAR 9999
TIMEOUT *DEC 5 /* THIS PARM IGNORED BY HSM */

XSNDDTAQ
DTAQ *CHAR 10 /* THIS PARM IGNORED BY HSM */
LIB *CHAR 10 /* THIS PARM IGNORED BY HSM */
RCDLEN *DEC 5 /* THIS PARM IGNORED BY HSM */
RCD *CHAR 9999

DATA QUEUE MESSAGE STRUCTURE
RESERVED1 *CHAR 11
USER *CHAR 9 /* first 9 char of user, only */
RESERVED2 *CHAR 12
SERVER *CHAR 10
OPCODE *CHAR 8 /* first 8 char of OPcode only */
DATA_LEN *CHAR 4
DATA *CHAR 9945 /* first 9945 char of data only */

NOTE 1: Calling the bound functions is faster than calling the external programs.

NOTE 2: The external API's are *programs* not commands.

NOTE 3: Maximum record length in BusinessLink CoProcessor-based HSM was 1920, maximum record length in
Strategi prior to v1r3m1 was 4150.

Server Behavior on Error

When the server encounters an error condition it will be terminated. The possible conditions which can cause this are:

• Any failure to create the message queue object.
• Receive request or Send reply with an invalid argument (NULL pointer).
• Receive request when no reply to previous OPcode is done.
• Any reply before receiving a request.
• Any reply with an invalid OPcode (blank or non-std beginning with '*').

This means that the server has no error/exception conditions to deal with. When the server returns from acting upon
RCVRQS it will have an OPcode to process. It must reply to that OPcode before attempting another RCVRQS.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

19

HTML Implementation

Overview
To simplify the interface for programming Strategi HSM in HTML, Strategi uses a template-based approach, where
HTML pages are templates and the dynamic generation of the final HTML page is done “on the fly” by the Strategi
server.

The web server, using specifications in a special file (called a HSM Resource File), obtains the fields to be substituted in
the template. This file is a text file in industry standard .INI format, and is named “<filename>.HSM”, where
<filename> is the same as the name of the .HTM template intended to be processed. It must exist in the same directory
as the template .HTM document, and its presence indicates to the Strategi server that the .HTM (of the same name) is not
a static web page, but requires dynamic substitution. This has a two-fold objective:

• Define HSM resources required by the HTML page such as structuring input fields, making HSM
server calls and defining output fields which can be mapped into template HTML documents.

• Keeping the HTML document as standard as possible, free from detailed and cryptic substitution
instructions, etc.

Visitor Counter Example
The first example is fairly basic, showing how the one might create a text based counter on the home page:

HTML (homepage.htm)

<HTML>
<TITLE>Hot Steel Products Inc. Home Page</TITLE>
<H1>Hot Steel Products Inc.</H1>
Welcome to our Web Site

You are visitor number <HSM NAME=VISITOR_NUMBER>
</HTML>

HSM (homepage.hsm)

[SERVER REQUEST]
SERVER=WEBTOOLS
OPcode=COUNTER

[REPLY]
OPcode=COUNTER
Start_Length_Field=1,9,VISITOR_NUMBER

The HTML template is standard HTML with the exception of the special HSM tag.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

20

This tag names a field (VISITOR_NUMBER) which the HSM Resource File defines as being supplied in a 9-byte reply
from server WEBTOOLS, OPcode COUNTER.

This, in turn, decides which server is called, selects the OPcode and defines any data required to fully qualify the request.
Strategi makes the server request and maps the reply data to the VISITOR_NUMBER field as specified.

Many of the things “defaulted” in the example above are better illustrated through the following example:

HTML (homepage.htm)

<HTML>
<TITLE>Hot Steel Products Inc. Home Page</TITLE>
<H1>Hot Steel Products Inc.</H1>
Welcome to our Web Site

You are visitor number <HSM NAME=VISITOR_NUMBER>
</HTML>

HSM (homepage.hsm)

* Call server to get next visitor number

[SERVER REQUEST]
SERVER=WEBTOOLS
OPcode=COUNTER

* Evaluate replies

[REPLY]
OPcode=COUNTER
Start_Length_Field=1,9,VISITOR_NUMBER

[REPLY]
OPcode=*NOSERVER
Substitute_URL=noserver.htm

[REPLY]
OPcode=*OTHER
Assign_Field_Value=unexpectedOPcode,*REPLY.OPCODE
Start_Length_Field=1,*,unexpectedData
Substitute_URL=unexpect.htm

Note that both HSM Resource file examples will have the same effect, provided the server is active and responds as
expected with an OPcode of COUNTER. The second example caters to the situation where the server is not running, and
the situation where the server returns an OPcode other than COUNTER for some reason.

The HTML file requested by the browser will be returned immediately following processing of the resource file, unless a
Substitute_URL= statement is invoked, in which case the specified URL will be returned instead.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

21

Guest Book Example
Following is a simple guest book application, where users can enter their name and email address, then press a button to
“sign” the guest book. All data is written to the AS/400 database by the WEBTOOLS server:

HTML (guestbk.htm)

<HTML>
<TITLE>Hot Steel Products Inc.</TITLE>
<H1>Guest Book</H1>
<FORM METHOD=POST ACTION=“addentry.hsm”>
Your Name:

<INPUT NAME=“GUEST_NAME” TYPE=“TEXT” SIZE=“40”>

Email Address:

<INPUT NAME=“EMAIL_ADDRESS” TYPE=“TEXT” SIZE=“40”>

<INPUT NAME=“SIGN_IT” TYPE=“SUBMIT” VALUE=“Sign It”>
</FORM>
</HTML>

HSM (addentry.hsm)

* Call server add visitor details to guest book

[SERVER REQUEST]
SERVER=WEBTOOLS
OPcode=ADDGUEST
Start_Length_Field=1,40,GUEST_NAME
Start_Length_Field=41,40,EMAIL_ADDRESS

* Evaluate replies

[REPLY]
OPcode=ADDED
Substitute_URL=added_ok.htm

Please note the filename of the .HSM Resource file is ADDENTRY.HSM, not GUESTBK.HSM (as in the previous
example). This is correct, since GUESTBK.HTM is not a template, and therefore does not require any HSM processing
to be displayed.

HSM resources are only required to process the form, so ADDENTRY.HSM is specified as the target of the submit
button. There does not need to be an actual ADDENTRY.HTM, since only HSM resources (and not the display of an
HTML document) are required. The document to be returned to the browser is specified as Substitute_URL. If one was
not otherwise specified, or no reply OPcode matched one specified, an error would be displayed.

Stock Inquiry Example
In this example, there is one main .HTM and two .HSM resource files. The first HSM resource file has the same name
as the .HTM, and would therefore be processed prior to displaying the .HTM page. The second HSM resource is called
if the form is “submitted”, i.e. if a submit button for the form is pressed.

HTML (stock.htm)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

22

<HTML>
<H1>Stock Inquiry</H1>
<FORM METHOD=POST ACTION=“stock_fm.hsm”>
<SELECT NAME=“SELECTED_ITEM” SIZE=10>
<HSMBLOCK NAME=ITEMLIST_BLOCK>

<OPTION><HSM NAME=ITEMS>Pipes
<OPTION>Rods
<OPTION>Plates
<OPTION>Rods
<OPTION>Plates
<OPTION>Rods
<OPTION>Plates

</HSM>
</HSMBLOCK>
</SELECT>
<INPUT NAME=“Prev10” TYPE=“SUBMIT” VALUE=“Previous 10”>
<INPUT NAME=“Next10” TYPE=“SUBMIT” VALUE=“Next 10”>

<INPUT NAME=“GetDetails” TYPE=“SUBMIT” VALUE=“Item Details”>

<HSMBLOCK NAME=DETAILS_BLOCK>
Stock available is <HSM NAME=ONHAND>44</HSM>

Stock on Backorder is <HSM NAME=BACKORDERED>44</HSM>

</HSMBLOCK>
<INPUT NAME=“order” TYPE=“SUBMIT” VALUE=“Place an Order”>
</FORM>

HSM (stock.hsm)

* Call server to get preload info for stock

[SERVER REQUEST]
SERVER=STOCK
OPcode=GETDATA
Start_Length_Field=1,1,OP
Start_Length_Field=2,10,POSITIONING_KEY
Export_Field=LIST_COUNT
Export_Field=ITEMS

* Evaluate replies

[REPLY]
OPcode=ITEMLIST
Start_Length_Field=1,4,LIST_COUNT
Start_Length_Field=5,10x20,ITEMS

[REPLY]
OPcode=ITEMDATA
Start_Length_Field=1,20,DETAIL_ITEM
Start_Length_Field=21,5.0,ONHAND
Start_Length_Field=26,5.0,BACKORDERED

* Block Handling

[BLOCK]
Name=ITEMLIST_BLOCK
Condition_Variable=LIST_COUNT

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

23

Condition_Criteria=NONZERO
Repeat_Count=LIST_COUNT

[BLOCK]
Name=DETAILS_BLOCK
Condition_Variable= DETAIL_ITEM
Condition_Criteria=NONBLANK

HSM (stock_fm.hsm)

* Process Stock form

[SUBMIT BUTTON]
Name=Prev10
Assign_Field_Value=OP,”B”
Assign_Field_Value=POSITIONING_KEY,ITEMS[1]
Substitute_URL=stock.htm

[SUBMIT BUTTON]
Name=Next10
Assign_Field_Value=OP,”F”
Assign_Field_Value=POSITIONING_KEY,ITEMS[10]
Substitute_URL=stock.htm

[SUBMIT BUTTON]
Name=GetDetails
Assign_Field_Value=OP,”I”
Assign_Field_Value=POSITIONING_KEY,SELECTED_ITEM
Substitute_URL=stock.htm

[SUBMIT BUTTON]
Name=Order
Export_Field=SELECTED_ITEM
Substitute_URL=order.htm

HTML Reference

HTML Keywords

<HSM NAME=field_name> </HSM>

This <HSM> tag defines a field in the HTML template, which is substituted by the field’s actual value prior to the page
being served to the requesting browser. An HSM field name can be up to 31 characters long.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

24

The closing </HSM> tag is optional, and permits sample text to be inserted at template design time. Any data between
the <HSM NAME=…> tag and the following </HSM> will not be included in the final generated HTML. Sample text
unrelated to a field substitution can be marked with a “<HSM> …sample… </HSM> pair”, omitting the NAME=
keyword.

Following a <HSM> tag, the closing </HSM> is deemed to be omitted if another tag beginning <HSM> is found prior to
finding a </HSM>, since they cannot be nested (but can enclose other HTML tags).

There is an additional attribute of the <HSM> tag, ESCAPE, e.g. “<HSM NAME=VAR ESCAPE=HTML>”. This can
be used to accomplish different sorts of escaping for the data. This attribute is not required. The four possible values of
ESCAPE are:

HTML Normal HTML escaping, e.g. “<”; for “<”. This is the
default.

URL URL escaping, e.g. “%3C” for “<”.
BACKSLASHX Used for substitution into JavaScript literals, e.g. “\x3C”for

“<” all but alphanumeric escaped.
BSX Same as BACKSLASHX.
BACKSLASHX25 Used for URL arguments of JavaScript functions that are part

of an anchor HREF (where simple URL escaping is not enough
because some browsers wrongly do a URL-style unescape before
passing the value to the function, and the function itself
cannot do the escaping if URL data is involved).

BSX25 Same as BACKSLASHX25.
NO No escaping will be done – data is already valid for context.
NONE Same as NO.

<HSMBLOCK NAME=block_name> </HSMBLOCK>

The <HSMBLOCK> tag and its following </HSMBLOCK> perform no substitution of their own, but define the HTML
statements they enclose as a “block”, which can be manipulated by name in the HSM resource file. They can be used to
optionally exclude blocks of conditional code, and to repeat lines of generated code, such as items in a list box, etc.

The closing </HSMBLOCK> tag is mandatory.

Conditional <HSMBLOCK> tags can be nested but cannot overlap. Repeat <HSMBLOCK> tags cannot be nested. An
example would be a conditional block containing a repeat block, containing further conditional blocks, with the outer
conditional preventing table headers for an empty table, and the inner conditionals preventing empty table rows.

If the block name has not been defined in the associated .hsm file(s), the tag and its matching end tag are ignored, so the
HTML it encloses will be displayed only once and exactly as specified in the template HTML.

Note that all variables within a repeat block are automatically indexed, reverting to the simple variable name if the
indexed element is undefined.

There are limits to the size of blocks and sample text, generating error messages if exceeded. An HSM repeat block,
including both start and end tags, is limited to 7000 characters of original HTML. Other HSM blocks, and HSM sample
text, are limited to only 1000 characters. Exceeding the first will cause a “Repeat block too large” error; others may
simply act as if the ending tag does not exist.

There is no limit to the amount of HTML generated and sent to the browser, only in the HTML before substitutions
occur. The HSMBLOCK name cannot exceed 31 characters in length.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

25

SHTML & Server Side Includes

.SHTML and .SHTM File Extensions

Sometimes simple HSM substitution does not require use of an HSM file. For example, you may have passed a value to
the HTML file through a URL (see “Values in Link URLs”), and simply need to display that value on the HTML page.

In this case, you would use the extension “shtml” or “shtm” instead of “html” or “htm”. SHTML files are processes by
HSM in the same manner as HTML files. They will also be displayed just as HTML files by your browser.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

26

Server Side Includes

Server Side Includes are a very useful way to save time when writing HTML. A Server Side Include is one tag added to
an HTML file that points to another HTML file. The contents of this second HTML file are added to the first HTML file
in place of the #Include tag.

For example:

HSM (homepage.hsm)

[DO]

HTML (homepage.htm)

<!--#INCLUDE FILE="header.htm" -->
This is the main body.
</BODY>
</HTML>

HTML (header.htm)

<HTML>
<BODY BGCOLOR=”BLUE”>

When homepage.htm is loaded from Strategi, the line “…#INCLUDE…” line will be replaced by the contents of
header.htm. You could add this #Include tag to any html files that you want to share the same header information (set
background, title, etc), and then simply change header.htm when you want to change the look of the site.

The format of the #Include tag is as follows:

<!--#INCLUDE FILE=”FilenamePlusOptionalURLData” -->

The file is referenced in the same manner a file reference in a link.

For compatibility with other web servers, the word VIRTUAL may be used in the tag instead of FILE:

<!--#INCLUDE VIRTUAL=”FilenamePlusOptionalURLData” -->

There can also be HSM substitution within the #Include tag:

<!--#INCLUDE VIRTUAL=”next.htm?item=<HSM NAME=itemvar ESCAPE=URL>” -->

However, there must be no white space in the final URL.

The included text is passed direct to the browser - it is not HSM processed after inclusion. HSM processing of the
included file uses variables passed by the #include, plus those set in the HSM file (if any) associated with the included
file. The included file can use Subtitute_URL as normal.

Include files can include other files, etc, to a maximum depth of ten.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

27

HSM Resource File Reference

File Construct
HSM Resource Files are identical in construct to .INI files. The file contains a series of “Groups” defining major
functionality. Each group contains a series of KEYWORD=VALUE pairs which define the detail of that group's
operation.

Unlike Windows .INI files, the groups are processed sequentially, so their sequence implies an order of operations.

Groups
Following are the valid groups and their purpose:

[SERVER REQUEST]

A request to an HSM server. The KEYWORD=VALUE pairs define field mappings and other information needed to
make the request.

[REPLY]

A test for a particular reply from the immediately prior [SERVER REQUEST], and the associated processing, if
matching.

[DO]

This group can be used to perform any actions (such as substitute URL) you do not want in another group type. Useful
to control flow independently of REPLY, BLOCK, etc.

[BLOCK]

Controls the behavior of a block (defined by the <HSMBLOCK> tag in the template HTML).

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

28

[SUBMIT BUTTON]

Tests for a specific submit button, assuming the HSM resource file was called via a submit button in an HTML form. Its
keywords define the associated processing, if matching.

Keywords and Values by Group
Following is a list of KEYWORD=VALUE pairs by group and their syntax:

 [SERVER REQUEST]

A request to an HSM server. The KEYWORD=VALUE pairs define field mappings and other information needed to
make the request.

SERVER=hsm_server_name
OPcode=server_OPcode_requested
Start_Length_Field=start_position,length,field_name – or – “literal”

Note that the first start_position is 1, not 0. The start_position can also be the ‘*’ character, which Strategi will assume
to be 1 if it is the first Start_Length_Field keyword value pair in the server request. For server requests containing
multiple Start_Length_Field keyword value pairs, a ‘*’ character for the start_position will inform Strategi to
dynamically calculate the start_position based upon the prior start_position plus length.

Length can be “10x20”, indicating a 10-element array, with each element 20 characters long. Length can also be “5.1”,
indicating five digits with one decimal, zoned decimal format.

The HSM request buffer is first cleared to spaces, then named fields (if any) have their values moved to the specified
positions. Character fields are truncated or space-filled to fit; numeric fields are converted to zoned decimal.

The OPcode is converted to uppercase before being sent.

You may use variables for server and OPcode names. If a server or OPcode name is preceded by an “&”, then, if a
variable with this name exists at that time in the HSM processing, the value for that variable will be used for the server or
OPcode. If no such variable is defined, an error will result.

[REPLY]

A test for a particular reply from the immediately prior [SERVER REQUEST], and the associated processing, if
matching.

OPcode=server_OPcode_replied
Start_Length_Field=start_in_buffer,field_length, field_name

Note that you can also use variables for OPcode names, as with the [SERVER REQUEST] group.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

29

[DO]

This group can be used to perform any actions (such as substitute URL) you do not want in another group type. Useful
to control flow independently of REPLY, BLOCK, etc.

Condition_Variable=field_name
Condition_Criteria=EQUAL -etc- (see below)
Condition_Compare_Value=field_name -or- “literal” – or – number
Substitute_URL=URL.htm

[BLOCK]

Controls the behavior of the corresponding <HSMBLOCK> tag in the template HTML.

Name=block_name
Condition_Variable=field_name
Condition_Criteria=EQUAL -etc- (see below)
Condition_Compare_Value=field_name -or- “literal” – or – number
Repeat_Count=field_name -or- number

[SUBMIT BUTTON]

Test for a specific submit button, assuming the HSM resource file was called via a submit button in an HTML form. Its
keywords define the associated processing if matching the HTML “submit” type button name; each “submit” button on a
HTML page has its own name:

Name=submit_button_name

The group would then contain general-purpose keywords such as Assign_Field_Value, Substitute_URL, etc., as
described below.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

30

Additional Keywords and Considerations

Conditions

As well as being used in blocks:

Condition_Variable=field_name, or HSM_Special_Value
Condition_Criteria=EQUAL -etc- (see below)
Condition_Compare_Value=field_name -or- “literal” - or- number

can be used to condition execution of all other groups:

• Server Request (immediately after OPcode)
• Reply (immediately after OPcode)
• Submit Button (immediately after Name)
• Do’s

with the remainder of that group (and for a Server Request all of the following Replies) being ignored if the condition is
false.

In a [REPLY], returned data values are not available for testing (because the Condition must be after the OPcode and
ahead of any Start_Length_Field codes), but they can be tested in a second [REPLY] for the same OPcode.

A matching [REPLY] OPcode block does not prevent following blocks from being processed (although they would
normally be for different OPcodes, and so do nothing), so one [REPLY] can retrieve the values and a following
[REPLY] with the same OPcode can have conditional processing based on the values.

Conditions are evaluated when the Condition keywords are encountered, so BLOCK statements should generally be at
the end of HSM processing, where variables will have their final values.

Condition Criteria

Based on just the Condition_Variable, the following conditions can be specified:

DEFINED NOTDEFINED
BLANK NOTBLANK NONBLANK
ZERO NOTZERO NONZERO

Based on the Condition_Variable and Condition_Compare_Value, these additional conditions can be specified:

EQUAL NOTEQUAL
GREATERTHAN NOTGREATERTHAN GREATERTHANOREQUAL
LESSTHAN NOTLESSTHAN LESSTHANOREQUAL
INGROUP NOTINGROUP

All fields contain text strings in HTML (defining numeric fields only affects how they are stored in the HSM buffer
to/from the AS/400), and those that look like numbers will be compared as numbers, while those containing text will be
compared as character strings.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

31

Undefined variables are considered to be blank (thus the separate DEFINED test).

Note that submit buttons are, in fact, just variables, so:

[SUBMIT BUTTON]
Name=xyz
Assign_Field_Value=abc,”XYZ PRESSED”

is the same as

[DO]
Condition_Variable=xyz
Condition_Criteria=DEFINED
Assign_Field_Value=abc,”XYZ Pressed”

(the variable also has a value, as defined in the HTML).

The INGROUP and NOTINGROUP are used to check whether a specific Strategi User is a member of a Strategi Group.
The Condition_Variable should be the user number, and the Condition_Compare_Value should be the name of a group.

[BLOCK]
Name=SHOWINFO
Condition_Variable=*USER.NUMBER
Condition_Criteria=INGROUP
Condition_Compare_Value=”SALES”

Finally, note that the NON and NOT conditions are equivalent.

Explicitly Setting Field Values

In addition to values taken from the HSM buffer in a [REPLY], and from HTML form INPUT tags, a field can be
explicitly assigned a value using:

Assign_Field_Value=field_name, field_name -or- number -or- “literal”

This takes effect immediately, overriding any Start_Length_Field in an earlier [REPLY]. The value may be changed by
a following [REPLY] or Assign.

Assign_Field_Value can be used in all groups except BLOCK definitions.

Exporting Embedded Values

To store a field in the output HTML document, use:

Export_Field=field_name

This causes a hidden field to be embedded in the next HTML page. The field is placed in the HTML, immediately ahead
of the </FORM> statement(s), as a hidden input field. The name of the hidden input field is the same as the name of the
exported field, and the value is also the same. This means that

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

32

Array elements cannot be exported, only entire arrays and simple fields (Assign_Field_Value can be used to create a
simple variable to export in place of an array element value).

Export_Field can be used in all groups except BLOCK definitions.

Array Elements

When a variable has been defined as an array, individual elements can be explicitly referred to in the HTML as
“fieldname[n]” or “fieldname _ _ n” for element number “n”, using 1 for the first element. In the HSM file, specific
array elements can be set or retrieved.

[REPLY]
OPcode=GETARR
Start_Length_Field=1,3,X
Start_Length_Field=4,10x50,ARR
Assign_Field_Value=ARR[X],”SELECTED”

The two-underscore style is recommended in HTML tags, both HSM and INPUT, where the square brackets may in
future have special HTML meaning.

For example, in the “two-underscore” style, the HTML would read as:

<INPUT TYPE=TEXT NAME=array__2>

and in the “square brackets” style, the tag would be:

<INPUT TYPE=TEXT NAME=array[2]>

Any fieldname ending with two underscores and a number will be treated as an array element.

Naming Conventions

Variable names can be up to 31 characters, must not start with a digit or have embedded spaces, and should be limited to
A-Z, 0-9, and the _ (for future HTML compatibility).

Variable names, group names, keywords, and special values are case-independent (being converted to uppercase
internally and in error messages).

Automatic HSM Start Position

It can sometimes be convenient in a [SERVER REQUEST] or [REPLY] group to simply specify a variables length in the
Start_Length_Field, and not have to also specify the starting position in the data being sent or received. You can use an
asterisk in Start_Length_Field to specify that the field should start immediately after the last field.

For example:

[SERVER REQUEST]
SERVER=STOCK
OPcode=GETDATA
Start_Length_Field=1,1,OP
Start_Length_Field=*,10,POSITIONING_KEY

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

33

Special Values

In place of a fixed OPcode for a [REPLY], *OTHER can be used, and will match any OPcode not yet matched in
previous replies.

In place of a literal in Assign_Field_Value and Condition_Compare_Value, the following special values can be used:

*REPLY.OPCODE The current reply OPcode (useful if OPcode=*OTHER
was specified).

*REQUEST.SERVER The name of the HSM server to which the last request
was made

*REQUEST.OPCODE The OPcode of the last HSM request made
*USER.REFERER The URL from which this request was made.
*CLIENT.IPADDRESS The requesting client's IP address.
*CLIENT.USERAGENT The HTTP browser identification.
*WEBSITE.IPADDRESS The server-side IP address for the request.
*WEBSITE.NAME The name of the website the request was made on.
*ZONE.CODE The name of the zone which this page is in
*ZONE.NAME The name of the zone which this page is in (alternative to

*ZONE.CODE)
*ZONE.DOMAIN The name of the Strategi domain (*IFS or website name) which

this page is in.
*ZONE.TEXT The descriptive text for this Strategi zone
*ZONE.TYPE The type of zone which this page is in.
*HOST.NAME Value from RTVSYSVAL SYSNAME, e.g. ‘DEV400'
*HOST.OSVERSION Value of DTAARA QSYS/QSS1MRI, e.g. 'V4R2M0'
*HOST.SERIALNUMBER Value from RTVSYSVAL QSRLNBR, e.g. '1211221'
*HOST.COUNTRY Value from RTVSYSVAL QCNTRYID 'US'
*HOST.MODEL Value from RTVSYSVAL QMODEL, e.g. 'S20' (leading spaces
dropped)
*HOST.PROCESSOR Value from RTVSYSVAL QPRCFEAT, e.g. '2165'
*STRATEGI.VERSION Strategi value RELEASE, e.g. '132'
*STRATEGI.VERSION_V The version portion of the Strategi value RELEASE
*STRATEGI.VERSION_R The release portion of the Strategi value RELEASE
*STRATEGI.VERSION_M The modification portion of the Strategi value RELEASE
*STRATEGI.USERS Strategi value USER#, eg.'000000235'
*DATETIME Date and time in the format: CCYYMMDDHHMMSS
*DATE CCYYMMDD
*DATE.CCYY CCYY
*DATE.CENTURY CC
*DATE.YEAR YY
*DATE.MONTH MM
*DATE.DAY DD
*TIME HHMMSS (24hr clock)
*TIME.HOUR24 HH (24hr)
*TIME.HOUR12 HH (12hr clock)
*TIME.HOUR12_AMPM 'AM' or 'PM' uppercase English
*TIME.MINUTES MM
*TIME.SECONDS SS

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

34

The following require the zone to have *BASIC authentication, else the value returned is blank:

*USER.NUMBER When the zone being used requires authentication, this returns
the number associated with the user logged in.

*USER.ACCESSNAME The user's access name.
*USER.EMAIL The value of the EMAIL field for the user
*USER.FIRSTNAME The value of the FIRSTNAME field for the user
*USER.LASTNAME The value of the LASTNAME field for the user
*USER.TITLE The value of the TITLE field for the user
*USER.ORG The value of the ORG field for the user
*USERATTR.ua From the UA file (ua = the name of the Strategi User Attribute

to retrieve).

An example of using these special values might be as follows:

[REPLY]
OPcode=NOSERVER
Substitute_URL=no_as400.htm

[REPLY]
OPcode=*OTHER
Assign_Field_Value=rpyOp,*REPLY.OPCODE
Substitute_URL=bad_op.htm

You can also use the special values in the html itself, by specifying the name in an HSM tag to equal some special value.
For example:

<HSM NAME=”*WEBSITE.NAME”>

INDEX Special Values

Often when an HSMBLOCK is repeated it is useful to display the index for that particular repetition of the block. The
*INDEX special value can be used to retrieve the index for a block. For example:

<TABLE>
<HSMBLOCK NAME=ITEMLOOP>
<TR><TD>
Number <HSM NAME=*INDEX>: <HSM NAME=ITEMNAME>
</TD></TR>
</HSMBLOCK>
</TABLE>

In this example, the first repetition of the block would replace *INDEX with one, the second with two, and so on.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

35

It is also useful to use the special values *EVEN_INDEX and *ODD_INDEX. These values are unique in that they are
used as the name of an HSMBLOCK. For example:

<TABLE>
<HSMBLOCK NAME=ITEMLOOP>
<TR><TD>

<HSMBLOCK NAME=*EVEN_INDEX></HSMBLOCK>
<HSMBLOCK NAME=*ODD_INDEX></HSMBLOCK>

Number <HSM NAME=*INDEX>: <HSM NAME=ITEMNAME>

</TD></TR>
</HSMBLOCK>
</TABLE>

The above example would alternate font color between red and blue.

HTTP Header Special Values

Often it is useful to have access to the information in the HTTP Header. HSM allows you to retrieve the HTTP Header
information. The following special values used to retrieve such information:

*HTTPHEADER.<httpheader> This will retrieve the specific corresponding value for
the HTTP Header keyword.

*HTTPHEADERLIST.KEYWORDS Lists all keywords, each surrounded by '[]'
*HTTPHEADERLIST.VALUES Lists all values, each surrounded by '[]'

*HTTPHEADERLIST.KEYWORDS_AND_VALUES
Lists all keywords and values, each surrounded by '[]'

Conditional [DO]

It is permissible, and very useful, to add conditions to a [DO] group. For example:

HTML (list.htm)

<HTML><BODY>
<FORM METHOD=POST ACTION="list_fw.hsm">
<SELECT NAME="list">

<OPTION>Destination List
<OPTION VALUE="product">Product List
<OPTION VALUE="staff">Staff

</SELECT>
<INPUT NAME="menu" TYPE="SUBMIT" VALUE="Go">
</FORM>
</BODY></HTML>

HTML (list_fw.hsm)

[DO]
Condition_Variable=list
Condition_Criteria=EQUAL
Condition_Compare_Value="product"
Substitute_URL=product.htm

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

36

[DO]
Condition_Variable=list
Condition_Criteria=EQUAL
Condition_Compare_Value="staff"
Substitute_URL=staff.htm

[DO]
Substitute_URL=list.htm

The user will choose an option from a dropdown menu, which will, according to the value of the option they chose, run
one of the DO groups, and will get to the Substitute_URL only if the conditions are met. If not, then the final DO will
simply send them back to list.htm.

Switching to Another File

To link between files, use

Substitute_URL=URL_to_display_next.htm
Substitute_URL=nextURL

This causes processing to switch immediately to the specified file, which will be a .htm or .hsm on the same server (in
which case all HSM variables are retained). Otherwise (if URL contains a “:”, or is not a .htm/.html or .hsm), it becomes
a normal HTTP redirection.

You can specify a literal value, such as “page2.htm”, after the Substitute_URL, around which you must place quotation
marks. You can also specify a variable name, such as nextURL, which should contain the exact value of the file to come
next. Example:

Assign_Field_Value=nextURL,”page3.htm”
Substitute_URL=nextURL

The remainder of the current group is ignored after a Subtitute_URL, so when used this is generally the last line in a
group.

Substitute_URL can be used in all groups except BLOCK definitions.

Values in Link URLs

All the above examples assume data comes from an HTML form, but values can also be included in the URL of a link.
Multiple links to the same document might then have different effects depending on their data.

Values for HSM variables and submit buttons in the URL follow normal HTTP conventions, e.g.:

 link text

would have the same effect as submitting:

<FORM METHOD=POST ACTION=somedoc.htm>
<INPUT NAME=var VALUE=newval>
<INPUT TYPE=SUBMIT NAME=sub VALUE=“Submit Button”>
</FORM>

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

37

Note the use of:

• ? after the real URL to introduce the values.
• & to separate the name=value pairs.
• + instead of embedded spaces.
• No spaces anywhere in the URL plus data combination.

In addition, special characters like %?+&=“ in the names or values must be represented as :%xx”, where xx is their
hexadecimal ASCII value (a space would be “%20”). This is an HTTP requirement.

Whether a submit button value is needed depends on the logic in the HSM resource files, with something as little as:

somedoc.htm?var=newval

being often all that is needed, or for multiple variables:

somedoc.hsm?var1=newval1&var2=newval2

Notice that the URL can point to an .hsm file as well as an html file.

Returning HTTP Messages

HSM allows for forwarding to a standard HTTP message page, either as an HTTP normal response or as an HTTP
forbidden message. This is useful for the integrity of look and feel for the website, as well as for use with non-browser
clients (such as the Strategi command line HTTP utility).

The format for the HTTP redirect messages are as follows:

RETURN_HTTP_FORBIDDEN=<code>,<text> Causes the HTTP 403 (Forbidden) to be sent with a
structured HTML page that shows <code> and <text> in
the normal error details.

RETURN_HTTP_RESPONSE=<code>,<text> Causes the HTTP <code> to be sent with the
<text> being the text for the HTTP
response.

Code must be numeric, and can be either a literal or a variable. If it is a variable, the variable name must be preceded by
an ampersand. The text can be either a literal or a variable, and if a variable it must also be preceded by an ampersand.

The keywords would be used in the same context as a Substitute_URL, in a REPLY or DO group:

[REPLY]
OPcode=HTTPERR
Start_Length_Field=1,10,CODE
Start_Length_Field=11,50,TEXT
RETURN_HTTP_RESPONSE=&CODE,&TEXT

Error Messages

Errors return HTTP error messages giving the HSM file and line number, using codes 523 and 524 to distinguish them
from true server errors, such as code 500.

Error messages are delivered to the browser as normal documents, so all browsers will display the detail text, not just a
standard string for the error number.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

38

HTTP Error redirection through a URL

To redirect to a specific resource on a specific HTTP error, the following can be embedded in the URL:

*ERROR_HTTP_nnn=<url>?<url-data>

or alternatively,

*ERROR_SGI_nnn=<url>?<url-data>

This would be included in the HTML. For example, if you attempting to link to a parts description page that might not
always exist, you could use the following in your HTML:

Then, if “part0001.htm” did not exist, an error 404 would occur, and the user would be redirected to “part_dft.htm”.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

39

HSM File Upload & Pushfeed

Strategi Pushfeed
Strategi’s Pushfeed allows a user to download files and printouts that have been sent to them directly from the Strategi
web server, rather than through the Strategi Java Applet. You can refer to the Strategi “Resources” area of your website
for an example by going to “http://(your.as400.address)/resources” in your browser, and using the pull-down menu to
select “Access Your Pushfeed”. You will be prompted to log in, and then you will see all files that have been sent to you
with the SNDSGIF command, and all printouts that have been sent to you by having them placed in your Strategi Outq.
See the Strategi Administrator’s Manual for more information on sending files.

With Strategi’s Pushfeed, each file has a specific path by which it is reachable through your browser. This path is in the
format of:

HTTP://(your.as400.address)/(Website Zone)/*PUSHFEED/(Strategi User Number)/(File
Number)/(File Name)

The “Website Zone” refers to a Website Zone which uses basic authentication (See the Strategi Administrator’s Manual
for more information on setting up Zones). The user is therefore required to log in before they can access the file. If
they have already logged into the Zone, they will not need to log in again. “Strategi User Number” is of course the
number of the user logged in. “File Number” is the reference number of the pushed file, and “File Name” is the actual
name of the file. An example of a full Pushfeed path would be:

HTTP://10.10.10.10/myzone/*PUSHFEED/000000699/0000007975/qtemp-test.dbf

Of course, you must have some way of retrieving all of this information. This is where the Push OPcodes for the
Strategi System server are used. Refer to the “/resources/pushfeed” directory of your Strategi CD (version 1.5.3 or
above) for the source of the Pushfeed HTML and HSM on your website. If you do not have a Strategi CD version 1.5.3
or above, please visit the download area of BusinessLink’s Support website at “support.businesslink.com”, where you
will be able to download the source as well.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

40

Push OPcodes (For Strategi Pushfeed)

LSTPUSH

Returns several arrays containing information about files that have been sent to the logged in Strategi user. For
LSTPUSH and DLTPUSH, the return OPcode and values are the same as those sent.

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=LSTPUSH
Start_Length_Field= 1, 9, *USER.NUMBER
Start_Length_Field= *, 3, BeginningStatus
* Beginning Status to include. “AVL”=Available, “XDL"=Deleted,
* “RTV"=Retrieved "APN=Pending, "ALL"=All Files
Start_Length_Field= *, 3, EndingStatus
* Ending Status to include.
Start_Length_Field= *, 10, ReferencePosition
* Reference Position, where in the file list to begin.
Start_Length_Field= *, 1, ScrollDirection
* Scrolling Direction, “F” for forward, “B” for back
Start_Length_Field= *, 4.0, MaxNbrOfEntries
* The maximum number of entries to be returned

[REPLY]
OPcode= LSTPUSH
Start_Length_Field= 1, 4.0, NbrOfEntriesReturned
Start_Length_Field= *, 1, MoreAfter
* Y if more entries exist for scroll forward, else N
Start_Length_Field= *, 1, MoreBefore
* Y if more entries exist for scroll back, else N
Start_Length_Field= *, 20x10, FileReference
Start_Length_Field= *, 20x9, User
* User (currently all the same)
Start_Length_Field= *, 20x3, Status
Start_Length_Field= *, 20x1, Priority
Start_Length_Field= *, 20x4.0, NbrOfTimesRetrieved
Start_Length_Field= *, 20x40, Description
Start_Length_Field= *, 20x40, Origin
Start_Length_Field= *, 20x64, FileName
Start_Length_Field= *, 20x1, TransferType
Start_Length_Field= *, 20x64, OverridingMimeType
Start_Length_Field= *, 20x10.0,Size
Start_Length_Field= *, 20x14, FileDateTime
Start_Length_Field= *, 20x14, CreateDateTime
Start_Length_Field= *, 20x14, QueueDateTime
Start_Length_Field= *, 20x14, SentDateTime
Start_Length_Field= *, 20x14, LastActionDateTime
Start_Length_Field= *, 20x14, DeleteDateTime

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

41

DLTPUSH

Deletes the requested file. Because of the array size, the maximum number of references to delete is 20.

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=DLTPUSH
Start_Length_Field= 1, 9, *USER.NUMBER
Start_Length_Field= *, 4.0, NbrOfReferencesToDelete
Start_Length_Field= *, 20x10, FileReferencesToDelete

Note that the AS/400 does not keep a "created" time for IFS files - instead it keeps a status changed time, which starts off
being create time but is affected by change of user authority etc. Windows on the other hand keeps the created time
instead of status changed.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

42

HSM File Upload
The Strategi web server has the ability to upload files as well. From a page within a Strategi Zone that is secured with
basic authentication (See the Strategi Administrator’s Manual for more information on setting up Zones), one can select
files from the drives of their PC and send them to the AS/400 IFS. One can also use HSM to retrieve information about
files on the IFS.

For example, imagine the file "postimg.htm" in the IMAGE zone, which is secured with BASIC authentication (for zone
setup, reference the Strategi Administration Manual). Note that you can upload any sort of PC file you want, but images
will serve as the example.

HTML (postimg.htm)

<HTML>
<FORM METHOD=POST ENCTYPE="multipart/form-data" ACTION="postimg.hsm" >
New Image: <INPUT TYPE=FILE NAME="newfil">
<INPUT TYPE=submit VALUE="Upload!">

<INPUT TYPE=HIDDEN NAME=newfil.authorityzone VALUE="IMAGE">

</FORM>
</HTML>

HSM (postimg.hsm)

[DO]

The HSM file doesn't do anything at this point except indicate to the server that HSM processing must be done
(retrieving the file). Setting the ENCTYPE attribute of the FORM tag to "multipart/form-data" allows the file download
input type. The INPUT tag, which is set to type FILE, is the key piece, allowing the user to select a file for download. It
should also be noted that "newfil.authorityzone" has been set to "IMAGE", meaning that the file will be secured in the
same manner as files in the IMAGE zone.

Since the GA version of Strategi V1R8, the special value of *CURRENT is allowed for the authorityzone property. This
special value, which is case sensitive, allows for securing with a zone located in a non-active (*SUSPENDED) or active
website via aliasing. Its use is not limited to aliased zones, but provides added flexibility if using a Strategi zone on a
non-active website for file upload purposes only. Prior to this, all zones used for securing the uploaded file required the
zone be on an active website. The input tag will look like the following:

<INPUT TYPE=HIDDEN NAME=newfil.authorityzone VALUE="*CURRENT">

Upon signing into the IMAGE zone, loading the page, selecting the file and clicking "Upload!", the selected file will be
sent to the AS/400. The file will be saved with a handle, which is how it will be retrieved from then on. When a file is
uploaded to the AS/400, it does not end up in the zone containing the upload web page. It is not even on the website
portion of the IFS at all, and is not named the same name as the file originally was named. It is on the AS/400 IFS in the
"/STRATEGI/publish" directory. The file will be named a ten digit number with no extension (this number is known as
a “handle”), each file being one number larger than the previous uploaded file. For example, the first file uploaded will
be named "0000000001", the second ""0000000002", etc. The "0000000001" file could then be accessed via web page
by referring to "*PUBLISH/0000000001". More likely, you would have a variable FILHDL (File Handle), and refer to
it like this:

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

43

<IMG SRC="*PUBLISH/<HSM NAME=FILHDL>

How does one access the file handle in the first place? Well, in the example HTML, the line <INPUT TYPE=FILE
NAME="newfil"> means that when the form is submitted, the variable "newfil.handle" will be available within HSM.
This newfil.handle could be then used on a following web page, or stored to a database file via an HSM application, with
other information as well. To access the handle information, you simply reference it in your HSM file.

HTML (postimg.htm)

<HTML>
<FORM METHOD=POST ENCTYPE="multipart/form-data" ACTION="postimg.hsm" >
New Image: <INPUT TYPE=FILE NAME="newfil">
<INPUT TYPE=submit VALUE="Upload!">

<INPUT TYPE=HIDDEN NAME=newfil.authorityzone VALUE="IMAGE">

</FORM>
Last Image:
<IMG SRC="*PUBLISH/<HSM NAME=filhdl ESCAPE=URL>">
</HTML>

HSM (postimg.hsm)

[DO]
condition_variable=newfil.handle
condition_criteria=defined
assign_field_value=filhdl,newfil.handle

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

44

File Operation and Property OpCodes (For HSM File Upload)

In addition to the default file properties, you can add, change and retrieve properties of a file using OPcodes directed at
the *SYSTEM HSM server. You can also move and copy files to areas of the website, as well as delete the uploaded
files.

CHGPROH

Changes the value of properties for a given file when passed its handle. If the property does not exist, it is created. The
return OPcode and values are the same as those sent, or ERROR if handle does not exist.

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=CHGPROH
Assign_Field_Value=PropertyName1,”Object Color”
Assign_Field_Value=PropertyValue1,”green”
Start_Length_Field= 1, 10, Handle
Start_Length_Field= *, 20, PropertyName1
Start_Length_Field= *, 128, PropertyValue1

CPYHFIL

Copies a published file or files or a website file or files to a specified path in a zone on a Strategi website.

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=CPYHFIL
Start_Length_Field= 1, 10, ”*HANDLE”
Start_Length_Field= *, 10, FromHandle
Start_Length_Field= *, 10, ToHandle

or

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=CPYHFIL
Start_Length_Field= 1, 10, ”*WEBZONPTH”
Start_Length_Field= *, 10, FromHandle
Start_Length_Field= *, 15, ToWebsiteName
Start_Length_Field= *, 15, ToZone
Start_Length_Field= *,1024, ToRelativePathWithinZone

[REPLY]
OPcode=CPYHFIL
Start_Length_Field= 1, 10.0, Size
Start_Length_Field= *, 14, ModifiedDateTime
Start_Length_Field= *, 14, StatusDateTime
Start_Length_Field= *, 14, AccessDateTime
Start_Length_Field= *, 11, ObjectType

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

45

Start_Length_Field= *, 5.0, CodePage

DLTHFIL

Deletes the file and references to the file for the specified handle.

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=DLTHFIL
Start_Length_Field= 1, 10, ”*HANDLE”
Start_Length_Field= *, 10, Handle

or

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=DLTHFIL
Start_Length_Field= 1, 10, ”*WEBZONPTH”
Start_Length_Field= *, 15, WebsiteName
Start_Length_Field= *, 15, Zone
Start_Length_Field= *,1024, RelativePathWithinZone

[REPLY]
OPcode=DLTHFIL
Start_Length_Field= 1, 10.0, Size
Start_Length_Field= *, 14, ModifiedDateTime
Start_Length_Field= *, 14, StatusDateTime
Start_Length_Field= *, 14, AccessDateTime
Start_Length_Field= *, 11, ObjectType
Start_Length_Field= *, 5.0, CodePage

FILEINFO

Retrieves information about a file on the IFS. The file can be specified via its location on the IFS, its location within the
Website, or its handle.

[SERVER REQUEST]
SERVER=*SYSTEM
OPCODE=FILEINFO
Start_Length_Field= 1, 10, "*IFS"
Start_Length_Field= *,1024, FullPath
* FullPath = complete IFS path, including leading "/"

or

[SERVER REQUEST]
SERVER=*SYSTEM
OPCODE=FILEINFO
Start_Length_Field= 1, 10, "*WEBZONPTH"
Start_Length_Field= *, 15, WebsiteName
Start_Length_Field= *, 15, Zone
Start_Length_Field= *,1024, RelativePath
* RelativePath = relative path, no leading "/"

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

46

or

[SERVER REQUEST]
SERVER=*SYSTEM
OPCODE=FILEINFO
Start_Length_Field= 1, 10, "*HANDLE"
Start_Length_Field= *, 10, Handle

[REPLY]
OPCODE=FILEINFO
Start_Length_Field= 1, 10.0, Size
* Size of file in bytes. If length is specified with number of decimals as above,
this size is left justified. Else, it will have leading zeros.
Start_Length_Field= *, 14, ModifiedDateTime
* CCYYMMDDHHMMSS datetime (contents) last modified (st_mtime)
Start_Length_Field= *, 14, StatusDateTime
* CCYYMMDDHHMMSS datetime status changed (st_ctime)
Start_Length_Field= *, 14, AccessDateTime
* CCYYMMDDHHMMSS datetime last accessed (st_atime)
Start_Length_Field= *, 11, ObjectType
* Type of object, always “*STMF” for *HANDLE requests.
Start_Length_Field= *, 5.0, Codepage
Start_Length_Field= *, 5.0, ImageWidth
* Image width (if known for .gif .jpg .jpeg files, else zero)
Start_Length_Field= *, 5.0, ImageHeight
* Image height (if known for .gif .jpg .jpeg files, else zero)

GETPROH

Retrieves the value of up to twenty properties for a given file when passed its handle and property requests.

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=GETPROH
Start_Length_Field= 1,10, Handle
Start_Length_Field= 11,20, PropertyName1
Start_Length_Field= 31,20, PropertyName2
Start_Length_Field= 51,20, PropertyName3
...

[REPLY]
OPcode=GETPROH
Start_Length_Field= 1, 10, Handle
Start_Length_Field= *, 128, PropertyValue1
Start_Length_Field= *, 128, PropertyValue2
Start_Length_Field= *, 128, PropertyValue3
...

MOVHFIL

Moves a published file or files or a website file or files to a specified path in a zone on a Strategi website.

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=MOVHFIL

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

47

Start_Length_Field= 1, 10, ”*HANDLE”
Start_Length_Field= *, 10, FromHandle
Start_Length_Field= *, 10, ToHandle

or

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=MOVHFIL
Start_Length_Field= 1, 10, ”*WEBZONPTH”
Start_Length_Field= *, 10, FromHandle
Start_Length_Field= *, 15, ToWebsiteName
Start_Length_Field= *, 15, ToZone
Start_Length_Field= *,1024, ToRelativePathWithinZone
* or you can use the following ...
Start_Length_Field= *,1024, OptionalAlternateFromRelativePathWithinZone

[REPLY]
OPcode=MOVHFIL
Start_Length_Field= 1, 10.0, Size
Start_Length_Field= *, 14, ModifiedDateTime
Start_Length_Field= *, 14, StatusDateTime
Start_Length_Field= *, 14, AccessDateTime
Start_Length_Field= *, 11, ObjectType
Start_Length_Field= *, 5.0, CodePage

SETIFSAUT

Sets standard authority and ownership for Strategi IFS objects. When publishing files to Strategi via HSM, and
subsequently moving them to another location in a website or IFS location, the automated process that performs the
move will become the object owner. SETIFSAUT allows a change in object ownership such that Strategi (e.g.,
SGIOBJOWN) becomes the owner and is able to perform normal Strategi-related operations. SETIFSAUT should be
used on any object deposited via file upload into a Strategi website to ensure Strategi jobs have the necessary authority to
perform required operations.

Use restrictions:

• The current object owner must be a profile that SGIOBJOWN has authority to
• Relative path elements (e.g., ‘..’) are not allowed within the path name
• Paths beginning with ‘/Q’ (e.g., ‘/QSYS.LIB’) or ‘/’ are not allowed

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=SETIFSAUT
Start_Length_Field= 1,1024, PathOfIFSObject

[REPLY]
OPCODE=DONE

or

[REPLY]
OPcode=ERROR
Start_Length_Field= 1,9999, ErrorMsg

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

48

SETPROH

Creates a property for a given file when passed its handle. The return OPcode and values are the same as those sent, or
ERROR if handle does not exist.

[SERVER REQUEST]
SERVER=*SYSTEM
OPcode=SETPROH
Assign_Field_Value=PropertyName1,”Object Color”
Assign_Field_Value=PropertyValue1,”red”
Start_Length_Field= 1, 10, Handle
Start_Length_Field= *, 20, PropertyName1
Start_Length_Field= *, 128, PropertyValue1

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

49

Distributed HSM Servers (DHSM)
DHSM (Distributed HSM) allows servers on peer installations of Strategi to be accessed. The system is considered a
peer because the relationship between the systems is equal (that is there is not any implied hierarchy). For the purpose of
this document the term "local" as applied to systems will mean the system that wishes to access an HSM server on
another system. "Host" will mean the peer system on which the HSM server is being hosted.

The setup can be envisaged as:

LOCAL
==
= =
= ---------- *STRATEGI <SGI USER> =
= | Client | | =
= |----------| | ------------ =
= |HSM SRVPGM| <-USRQ-> | HSM SRVPGM | =
= ---------- |------------| =
= | Relay PGM | <------------
= ------------ = |
= = |
== |

|
TCP/IP

HOST |
== |
= = |
= ------------ = |
= | Agent PGM | <------------
= ---------- |------------| =
= |HSM SRVPGM| <-USRQ-> | HSM SRVPGM | =
= |----------| | ------------ =
= | Server | | =
= ---------- *PEER <SYS CODE> =
= =
==

DHSM Setup Steps

• Defining of peer systems (local and host systems)
• Creation of peer relay servers (local system)
• Enabling of peer services, and optionally (host system)
• Modification/addition of server authorities (host system)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

50

Authentication & Security
One of the key fields in the record is the serial number of the peer system. This must match RTVSYSVAL QSRLNBR;
the Strategi software will retrieve the system serial number and pass it to the other end to identify itself. The serial
number is analogous to a User's access name. Once the serial number is matched against the peer file, the defined
system code is used in all other operations with reference to this system.

The two programs that connect for DHSM perform bi-lateral authentication with each other. Authentication
requirements must be fulfilled at both ends before the connection can proceed with HSM transactions.

The fundamental basis for this is a 1024 bit dynamic exchange key. This key is analogous to a user's passphrase and is
generated every time the record is "Reset" (Option 6 from the work-with). The key is hashed with several other peer and
link specific pieces of information and the hash is sent for validation - this is a form of digest authentication. Thus, after
the key is initially exchanged on the first connection with the peer, it is never resent.

Whenever a mismatch occurs with the exchange key the record is immediately locked and a reset is required. Whenever
the record is reset, all connections are always accepted until the new challenge key is confirmed as stored at the other end
(in practical term this is measurable in milliseconds from the time of TCP connection).

The peer definition can specify an IP filter from which connections will be accepted - this filter is checked by the both
sides of the connection.

The peer definition can specify that SSL and, optionally, a client cert (SSL always uses a server cert) is required. The
local side (which is making the TCP/IP connection) will validate it's recorded DNS name against the certificate common
name, provided the DNS name is not an IP address. If a client certificate is used then the host side validates that the
certificate received from the client matches the DNS name of the peer record (use of a client cert excludes configuring a
simple IP address for the DNS name).

Setup Step 1: Define Peer System
The xxxSGIPEER commands are used to define a peer system. This definition is used to specify details of the peer
system for making a connection (e.g. DNS), the requirements of the connection (e.g. SSL) and the status and identity of
the system.

Setup Step 2: Configure Peer Relay Server
This uses CRTHSMSVR with a type of *PEER. The system name must be supplied, and the name of the server on the
host system can also be entered, if different from the local server name. If the peer system serial number is the same as
the local system, this indicates a local-loop test server and an alternate server name must be entered. If it were not then
the DHSM agent would end up making it's request of the original DHSM relay server, creating a deadlock.

Setup Step 3: Enabling Of Peer Services
The 3 Strategi values DHSMADDRESS, DHSMCERTIFICATE and DHSMTHREADS control the DHSM agent
services. These need to be running on a host machine.

DHSMADDRESS specifies what TCP/IP address and ports to listen on. The Address can be *NONE (no DHSM
incoming), *WEBSITES (use the addresses listed for websites, with different port), or a specific IP address. The Base
Port is the non-ssl port to listen on, SSL is assumed to be this +1 and SSL+CTF this +2. The Use SSL flag enables SSL
listening.

DHSMCERTIFICATE supplies the certificate for both client and server SSL connections. It may be *NONE or a
website name. This is typically the principle website for the 400.

DHSMTHREADS controls the initial, increment and maximum threads DHSM can run. These are licensed and
controlled just like HTTP Threads.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

51

Setup Step 4: Modification of Server Authorities
DHSM servers making a request of the host server are checked as *PEER and the system code for the local system, as
defined on the host system. Specific checking of individual users can only be done on the local system. The user details
are not relevant or applicable on the host system for the purpose of checking server authority. For example, if the local
system defined Strategi user 231, then this bears no relevance to the hosting system's user 231.

Any servers that are desired to be protected from access by a peer system should be changed to be restricted, and a
*PEER *ALL *NO authority added.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

52

Other Topics

Other Resources
Following are a few additional references of sample HTML/HSM source code.

SGIEXAMPLE

Strategi contains additional Strategi HSM skeleton server samples in the source file, STRATEGI/SGIEXAMPLE
*FILE.

http://support.businesslink.com

The download area of the BusinessLink support website will contain the source for various demonstration / example
applications.

Additional Questions
Listed below are a few questions and answers, which may help in solving a particular HSM programming need you may
have:

Question:
On a reply, can data sent back to a page to a substitute URL, be made to check a checkbox in the HTML?

Answer:
To check a checkbox, output the strings “CHECKED” or “ “ as the value of an HSM reply variable, so the HSM
[REPLY] code includes, for example:

Start_Length_Field=11,7,somevar

and then the HTML can be:

<INPUT TYPE=CHECKBOX NAME=somename <HSM NAME=somevar>>

Please note that this is “technically” invalid HTML, because the <HSM> tag has been nested inside the <INPUT> tag.
This is acceptable, however, for Strategi’s HSM, because the HSM server will have replaced the <HSM> tags before the
document is delivered to the browser.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

53

In the example above, we used different names for the form field NAME= and the HSM variable, so it was clear which
was which, but in a real application would be natural for them to be the same.

Question:
On a reply, can data sent back to an HTML page (using HSM), be inserted into an input field, so it can be edited and sent
back again?

Answer:
Data for the initial value of a textbox is just the value of the relevant reply variable, for example:

<INPUT TYPE=TEXT NAME=somename VALUE=“<HSM NAME=somevar>“>

with the quotes needed in case there are embedded spaces in the value.

Please note that this is “technically” invalid HTML, because the <HSM> tag has been nested inside the <INPUT> tag.
This is acceptable, however, for Strategi’s HSM, because the HSM server will have replaced the <HSM> tags before the
document is delivered to the browser.

In the example above, we used different names for the form field NAME= and the HSM variable, so it was clear which
was which, but in real life would be natural for them to be the same.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

54

Appendix 1, Converting Old
Servers

With Strategi version 1.3+ we now more tightly manage the interaction between HSM clients and servers to provide
more flexibility and control of the HSM process. In addition, the ability to create
host-based clients is now available.

While the process is very much "message queue" oriented, we now provide our own API calls to
implement this, instead of using QRCVDTAQ and QSNDDTAQ directly. These API's are available as ILE bound calls
and OPM program calls. XRCVDTAQ and XSNDDTAQ are provided for easy server modification to the new support,
providing an identical "drop-in" replacement for the old data-queue calls.

The older, DTAQ based servers, continue to be supported exactly as before, but the direction would be clearly to migrate
these servers to the new API's in the shortest possible time frame. Old servers *do not* inherit any benefits from the
new design.

The example source file (now called SGIEXAMPLE) has been updated with tested and working servers and skeletons to
illustrate the new options. It is *strongly* recommended that customers start writing new servers using the skeleton
servers in SGIEXAMPLE.

A new include file, SGIINC, has been added and it contains HSM.H which has all public definitions
required by a C program. The client side interface is currently for internal use only.

A new binding directory has been added, SGIBNDDIR, which contains all public Strategi bindable
objects. For tested and working examples on how to create ILE-RPG programs with bound service
program calls, refer to the SGIEXAMPLE/#MAKE source member.

Principle Benefits
• Simpler and more logical API interface specifically designed for HSM.
• Significantly reduced transaction overhead (2ms from 36ms on our 170).
• Multiple parallel servers.
• Strategi now detects and reports failures to reply to an OPcode.
• Increased transaction length, to 9999 bytes..
• Host-based (AS/400) clients.
• Ability for us to provide detailed usage/response statistics.

Existing Strategi HSM servers from v1.0.0 through v1.2.3 can be quickly converted to use the new HSM interface
specification currently found in v1r3.

Once a server is converted it immediately inherits all the principle benefits outlines in the introduction for this document.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

55

Converting the server to use the new HSM interface (as opposed to the data queue compatibility interface) provides the
following additional benefits:

A simpler, cleaner and therefore a more “maintainable” program.
The client type for each transaction.
Full length client identification field (10 vs. 9).
Full length data (9999 vs. 9945).
Full length OPcode (10 vs. 8).
Reduced interface call overhead (by approximately 50%).

NOTE 1: The only non-mechanical change that may be required is if an old HSM server uses OPcodes, as part of the
application, that begin with an asterisk. Any such OPcodes should be changed to not use an asterisk, in both client
HTML and server code, before proceeding with any conversion. Such OPcodes would be blocked by the new interface,
so must be changed. Strategi considers OPcodes beginning with an asterisk to be system OPcodes, like *STOP.

NOTE 2: A server no longer has any timeout, so any logic relating to timeout must be eliminated. It remains possible to
implement periodic processing by creating a client program (submitted by the server on startup) that periodically submits
a particular request to the server. The vast majority of existing servers should have no timeout processing, as data queue
timeout cannot be relied on for periodic processing, due to no timeout occurring when the server is actively processing
requests for clients.

COMPATABILITY INTERFACE Conversion
1. Check the existing HSM server for application OPcodes beginning with an asterisk; refer to note # 1, above.

2. Change the program parameter list.

 Original:

C *ENTRY PLIST
C PARM DTQRPY 10
C PARM DTQRQS 10
C PARM DTQLIB 10

 Becomes:

C *ENTRY PLIST
C PARM SVRNAM 10

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

56

3. Change the QRCVDTAQ call.

 Original:

C CALL 'QRCVDTAQ'
C PARM DTQRQS
C PARM DTQLIB
C PARM 1920 DTQLEN 50

C PARM RQSRCD
C PARM –1 WAIT 50

 Becomes:

C CALL 'XRCVDTAQ'
C PARM ' ' DTQRQS 10
C PARM ' ' DTQLIB 10
C PARM 4150 DTQLEN 50
C PARM RQSRCD
C PARM –1 WAIT 50

4. Change the QSNDDTAQ call.

 Original:

C CALL 'QSNDDTAQ'
C PARM DTQRPY
C PARM DTQLIB
C PARM 1920 DTQLEN
C PARM RPYRCD

 Becomes:

C CALL 'XSNDDTAQ'
C PARM ' ' DTQRPY 10
C PARM ' ' DTQLIB 10
C PARM 4150 DTQLEN 50
C PARM RPYRCD

5. Compile and run as previously.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

57

ILE INTERFACE Conversion
1. Check the existing HSM server for application OPcodes beginning with an asterisk; refer to note # 1, above.

2. Convert the existing source to ILE, if necessary (CVTRPGSRC).

3. Change the message element definitions.

Original (as for OPM program):

I DS
I 1 4150 RQSRCD
I 1 42 RQSHDR
I 1 10 RQSTYP
I 11 11 RQSF01
I 12 20 RQSUSR
I 21 42 RQSF02
I 43 50 RQSOPC
I 51 54 RQSLEN
I 55 4150 RQSD
I DS
I 1 4150 RPYRCD
I 1 42 RPYHDR
I 43 50 RPYOPC
I 51 54 RPYLEN
I 55 4150 RPYD

Becomes:

D RQSOPC S 10 * REQUEST OPCODE
D RQSD S 1 DIM(9999) * REQUEST DATA
D RQSLEN S 4 P 0 * REQUEST DATA LENGTH
D RQSCTY S 10 * RQS CLIENT TYPE
D RQSCID S 10 * RQS CLIENT ID
D*
D RPYOPC S 10 * REPLY OPCODE
D RPYD S 1 DIM(9999) * RPY DATA
D RPYLEN S 4P 0 * RPY DATA LENGTH

4. Change the program parameter list.

Original (as for OPM program):

C *ENTRY PLIST
C PARM DTQRPY 10
C PARM DTQRQS 10
C PARM DTQLIB 10

Becomes:

C *ENTRY PLIST
C PARM PSVR 10 *SERVER NAME

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

58

5. Change the call to QRCVDTAQ (note CALLB in ILE program).

Original (as for OPM program):

C CALL 'QRCVDTAQ'
C PARM DTQRQS
C PARM DTQLIB
C PARM 1920 DTQLEN 50
C PARM RQSRCD
C PARM –1 WAIT 50

Becomes:

C CALLB 'HSMRCVRQS'
C PARM RQSOPC *OPCODE
C PARM RQSDTA *DATA
C PARM RQSLEN *LENGTH
C PARM RQSCTY *CLIENT TYPE
C PARM RQSCID *CLIENT ID

6. Remove code to move RQSHDR to RPYHDR.

7. Remove any testing of RQSTYP or for data-queue timeout, and move the testing of the OPcode to the main line.

Original (as for OPM program):

C DTQLEN CASEQ 0 DTQTMO
C RQSTYP CASEQ '*CLNT' OPCODE
C RQSTYP CASEQ '*STOP' ENDSVR
C CAS BADRQS
C END
C*
C* (TESTING OF OPCODES WAS USUALLY IN A SEPARATE SUBROUTINE)
C*
C*--------------------- STANDARD OPCODES
C RQSOPC CASEQ '*PING' PNGSVR
C RQSOPC CASEQ '*STOP' ENDSVR
C*--------------------- APPLICATION OPCODES
C RQSOPC CASEQ 'GETLST' GETLST
C RQSOPC CASEQ 'GETITM' GETITM
C RQSOPC CASEQ 'GETLST2' GETLS2
C RQSOPC CASEQ 'GETITM2' GETIT2
C*--------------------- OPCODE NOT RECOGNIZED
C CAS BADRQS
C END

Becomes:

C*--------------------- STANDARD OPCODES
C RQSOPC CASEQ '*PING' OPPING
C RQSOPC CASEQ '*STOP' OPSTOP
C*--------------------- APPLICATION OPCODES
C RQSOPC CASEQ 'GETLST' GETLST
C RQSOPC CASEQ 'GETITM' GETITM
C RQSOPC CASEQ 'GETLST2' GETLS2
C RQSOPC CASEQ 'GETITM2' GETIT2
C*--------------------- OPCODE NOT RECOGNIZED
C CAS BADRQS
C END

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

59

8. Change the QSNDDTAQ call.

Original (as for OPM program):

C CALL 'QSNDDTAQ'
C PARM DTQRPY
C PARM DTQLIB
C PARM 1920 DTQLEN
C PARM RPYRCD

 Becomes:

C CALLB 'HSMSNDRPY'
C PARM RPYOPC *OPCODE
C PARM RPYDTA *DATA
C PARM RPYLEN *LENGTH

9. Remove any subroutines dealing with data queue timeout; if periodic processing is required, refer to note # 2, above.

10. Add subroutine for processing *STOP by replying with *STOPPED and exiting. Program structure for this can be
found in the Strategi library, Source file SGIEXAMPLE, Member HSMSKLRPG.

For Example:

C*STOP REQUEST - Server Responds With '*Stopped' And Flags
C*Need To Exit
C*
C HSMOPCSTOP BEGSR
C*
C RQSCTY IFNE '*CONTROL'
C EXSR HSMOPCERR
C ELSE
C MOVEL(P) '*STOPPED' RPYOPC
C Z-ADD 0 RPYLEN
C ENDIF
C SETON LR
C ENDSR
C*

11. Compile program using CRTBNDRPG or CRTRPGMOD/CRTPGM, specifying BNDDIR(STRATEGI/SGIBNDDIR).

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

60

Appendix 2, Additional HSM
Administrative Features

HSM Authorities
An HSM server can be secured using HSM authorities. HSM authorities define restrictions and permissions for Strategi
Users, Strategi Groups, or even specific AS/400 users (through the *HOSTUSER specification of the Strategi User),
with regards to whether they can use certain OPcodes. From the “Work with HSM Servers” (WRKHSMSVR) menu
option, you can work with authorities for any server.

In order for authority settings to be checked, the HSM server must have restriction turned on, via the RESTRICT
parameter (CRTHSMSVR, CHGHSMSVR). In order for authority checking to have user information to check against,
the HSM application’s web pages must reside in an authenticated zone.

HSM Performance Monitoring
HSM Servers can be monitored for performance information. A server will not be monitored unless the performance
monitoring parameter, PFRMON, is set to *YES.

Performance monitoring tracks time, in milliseconds, between HSM requests and replies. Minimums, maximums,
averages, and a total count are recorded. This information can be retrieved with the DSPHSMPFR command.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

61

Customized Login Pages
Strategi website zones can be configured to allow *CUSTOM authentication. This allows you to create customized login
web pages, rather than using the browser’s default login dialogue (as with *BASIC).

With *CUSTOM authentication, one page within the *CUSTOM authenticated zone will be delivered without any
authentication whatsoever (although SSL requirements will apply where configured). The name of this page is specified
by the LOGINURL Strategi value (“login”, for example, is the default). This can be specified with or without an
extension, depending upon whether you wanted different login page types delivered based on zone (One zone might
deliver “login.htm”, while another “login.shtm”). This page will be used to log the user into the zone.

The login page must contain a form which makes a post, the action of which is another web page within the zone,
specifying “?*LOGIN” after the name of this file. Also within the form must be two input fields, “*LOGINUSR”, and
“*LOGINPWD”. These fields will be where the user signs in. An example of a valid login web page follows:

HTML (login.htm)

 …
<Form Action="main.htm?*LOGIN" Method="POST">
User Name <Input Type="text" Name="*LOGINUSR">

Password <Input Type="password" Name="*LOGINPWD" value="">

<Input Type=Submit Value="LOGIN">
</Form>

 …

Main.htm file, in turn, would usually contain links that allow the user to log off.

HTML (Main.htm)

…
You have reached a page using HTTP Custom Authentication
LOGOUT

LOGOUT AND GO HOME

…

These logout links can be included on any page within the zone. The logout link has a very specific structure. First,
notice that no actual html page (just a “.” Instead) is being referenced. Instead, two variable pairs are being sent.
*SESSION=LOGOUT tells the server to log the user out of the zone, and *LOGOUTREDIRECT sends them to a
different web page. The fact that the redirect is to “/homepage.htm” means that it will be passed to the homepage.htm in
the root of the website. Finally, notice that returning to the login page effectively logs the user out.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

62

HSM Server Packaging & Installation Commands
The PKGHSMSVR and INSHSMSVR are Strategi commands that allow HSM developers to distribute HSM
applications to other AS/400’s running Strategi. PKGHSMSVR is used to prepare a HSM application for distribution on
the source AS/400 while INSHSMSVR is used to install the HSM application on the destination AS/400. A simple
explanation of the command parameters are listed below. For more detailed information, refer to the online help
associated with each command parameter.

PKGHSMSVR SVRNAM name of server to package
 LIB library where server program resides
 DIR website code and subdirectory of IFS objects
 DEV AS/400 storage device to save to (*DEVD or *SAVF)
SAVF name of save file to contain objects for distribution
 PGM packaging program (default HSMPKGEZ)

Implementation Notes
• A data area of type *CHAR length 10 named ‘TGTRLS’ must reside in the library specified on the command. This

data area contains the target release that the objects will be saved at. The format of the data area contents are of form
VxRxMx (i.e. V4R2M0).

• All objects must be owned by a profile that the user who installs the application on the destination AS/400 has
authority to. If this is unknown, it is recommended that all objects be owned by Strategi user profile SGIOBJOWN.
This profile has the highest probability of existing on both target and destination AS/400s.

• The packaging program HSMPKGEZ is the default-issue packaging program used by the command. A different
packaging program may be specified if it exists. For an example of the procedures that this program performs, refer
to the source member HSMPKGEZ in file SGIEXAMPLE in the Strategi library.

• From a development standpoint it is recommended that the target AS/400 OS/400 version be confirmed before the
HSM application is packaged. This will determine the target release used in the package process and avoid
complications on the installation. Failure to do so can force a repeat of the package process and delay installation
time.

INSHSMSVR SVRNAM name of server to install
 LIB library for server objects
 DIR website code and subdirectory of IFS objects
 DEV AS/400 storage device to restore from (*DEVD or *SAVF)
 SAVF name of save file containing objects to install
 SVROPT server overwrite option
 LIBOPT library overwrite option
 DIROPT directory overwrite option

Implementation Notes
• If a normal completion message is not received, display the job log to obtain further detail on the possible problem.

The most likely causes are security format changes due to insufficient authority. This is usually resolvable with
operator intervention (i.e. granting proper authorities) and executing the command again but may require a
repackage on the source system depending on the severity.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

63

Appendix 3, Java HSM Server
Documentation

Class com.businesslink.sgi.api.hsm.HsmClient
public class HsmClient
implements HsmCltIntInterface

An HsmClient is used to submit requests to an HSM Server using HsmClientRequest objects. Creation of an HsmClient,
in some environments, has a relatively high resource penalty; therefore, HsmClients should be created once and reused
as many times as possible.

In the case where a single HsmClient object is shared among multiple threads it is the responsibility of those threads to
synchronize all uses of the object.

If threads which require HsmClient objects are frequently starting and ending, it is recommended that a group of
HsmClient objects are managed in a pool such that one object is assigned to a thread for the scope of one transaction, and
is then returned to the pool. This technique is similar to JDBC connection pooling.

Constructors

• HsmClient

public HsmClient()

 Creates an HsmClient object.

• HsmClient(PrintWriter)

public HsmClient(PrintWriter writer)

 Creates an HsmClient object that will use the specified PrintWriter to log requests and replies.

 Parameters:
 writer – PrintWriter to be used for logging.
Methods

• processHsmRequest

public void processHsmRequest(String server, HsmClientRequest
cltRqs, int timeout)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

64

 Allows the client object to process an Hsm Request, i.e., send an Hsm Request to a server.
 Parameters:
 server – Name of the HsmServer to send the request to
 cltRqs – an HsmClientRequest object which contains request information
 timeout – a timeout, in milliseconds, for this request.

• processHsmRequest

public void processHsmRequest(String server, HsmClientRequest
cltRqs)

 Allows the client object to process an Hsm Request, i.e., send an Hsm Request to a server.
 Parameters:
 server – Name of the HsmServer to send the request to
 cltRqs – an HsmClientRequest object which contains request information

Class com.businesslink.sgi.api.hsm.HsmClientDetails
public final class HsmClientDetails

An HsmClientDetails is used to hold a specific set of information about an HsmClient. This object is created internally
by the HSM management classes and passed to servers with each request.

Methods

• getAuthorityID()

 public String getAuthorityID()

Returns the authority identification value of the client. This is the ID of the client which was checked for
authority (if the server is restricted). This will differ from the original client when, for example, the HSM
request was relayed to a remote system by DHSM. The precise contents of the ID depends on the authority
type.

• getAuthorityType()

 public String getAuthorityType()

Returns the authority type value of the client. This is the type of the client which was checked for authority (if
the server is restricted). This will differ from the original client when, for example, the HSM request was
relayed to a remote system by DHSM. Refer to the standard Strategi documentation for server authorities for a
list of possible authority types.

This refers to the authorization entry which allowed this transaction. The authorization could have been for a
*USER, a *GROUP, a *PEER, or something else—see the HSM authority commands for a full listing. Note
that if the client is a Strategi user on the web, *USER will be the authority type, rather than *STRATEGI as in
the case of the Client Type.

• getID()

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

65

 public String getID()

Returns the identification value of the client. The precise contents of the ID depends on the client type.

• getLocation()

 public String getLocation()

Returns the location of the client. If the client request originated on the same system, the location is
"*LOCAL"; if it originated on another system, it will be the peer name of the remote system as defined on the
local system.

• getType()

 public String getType()

 Returns the type value of the client.

• getUserAttribute()

 public String getUserAttribute()

Returns the client's user attribute that has been associated, through configuration, with this server.

Class com.businesslink.sgi.api.hsm.HsmClientRequest
public class HsmClientRequest

An HsmClientRequest object encapsulates an HSM transaction from the perspective of the client. As such, it permits the
request to be written and the reply to be read.

Constructors

• HsmClientRequest()

 public HsmClientRequest()

 Constructs an HsmClientRequest object.

Methods

• copyOfRequest()

 public HsmData copyOfRequest()

Returns an HsmData object which is a copy of the request. Typically an application would only be interested in
a copy of a request in order to log it in an application specific manner

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

66

• copyOfReply()

 public HsmData copyOfReply()

Returns an HsmData object which is a copy of the reply. Typically an application would only be interested in a
copy of a reply in order to log it in an application specific manner

• dumpRequest(PrintWriter)

 public void dumpRequest(PrintWriter writer)

Dumps the request data to the specified printwriter.

 Parameters:
 writer – PrintWriter to use

• dumpReply(PrintWriter)

 public void dumpReply(PrintWriter writer)

Dumps the reply data to the specified printwriter.

 Parameters:
 writer – PrintWriter to use

• getRequestUnused()

 public int getRequestUnused()

 Returns the length of unused data in the request.

• getRequestPosition()

 public int getRequestPosition()

 Returns the current read position of the request.

• getReplyChars()

 public char[] getReplyChars()

 Returns an array of characters from the entire reply.

• getReplyChars(int)

 public char[] getReplyChars(int pos)

 Returns an array of characters from the reply beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0

• getReplyChars(int, int)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

67

 public char[] getReplyChars(int pos, int length)

Returns an array of characters of the specified length from the reply, beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0
 length – number of characters to return

• getReplyCharsNext()

 public char[] getReplyChars()

 Returns an array of characters from the current position to the end of the reply data.

• getReplyCharsNext(int)

 public char[] getReplyChars(int length)

Returns an array of characters from the current position to in the reply data for the specified length.

 Parameters:
 length – number of characters to return

• getReplyLength()

 public int getReplyLength()

 Returns the length of the HSM Client reply.

• getReplyOpcode()

 public String getReplyOpcode()

 Returns the OPcode of the HSM Client reply.

• getReplyPosition()

 public int getReplyPosition()

 Returns the current position in the HSM Client reply.

• getReplyRemaining()

 public int getReplyRemaining()

 Returns the remaining length of the HSM Client reply.

• getReplyString()

 public String getReplyString()

 Returns a String from the entire reply.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

68

• getReplyString(int)

 public String getReplyString(int pos)

 Returns a String from the reply beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0

• getReplyString(int, int)

 public String getReplyString(int pos, int length)

Returns a String of the specified length from the reply, beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0
 length – length of data to return

• getReplyStringBuffer()

 public StringBuffer getReplyStringBuffer()

 Returns a StringBuffer from the entire reply.

• getReplyStringBuffer(int)

 public StringBuffer getReplyStringBuffer(int pos)

 Returns a StringBuffer from the reply beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0

• getReplyStringBuffer(int, int)

 public StringBuffer getReplyStringBuffer(int pos, int length)

Returns a StringBuffer of the specified length from the reply, beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0
 length – length of data to return

• getReplyStringBufferNext()

 public StringBuffer getReplyStringBuffer()

 Returns a StringBuffer from the current position to the end of the reply data.

• getReplyStringBufferNext(int)

 public StringBuffer getReplyStringBuffer(int length)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

69

Returns a StringBuffer from the current position to in the reply data for the specified length.

 Parameters:
 length – length of data to return

• getReplyStringNext()

 public String getReplyString()

 Returns a String from the current position to the end of the reply data.

• getReplyStringNext(int)

 public String getReplyString(int length)

Returns a String from the current position to in the reply data for the specified length.

 Parameters:
 length – length of data to return

• resetRequest()

 public void resetRequest()

Voids the current request data. Also voids the reply since the reply is integrally bound to the request.

• setReplyPosition(int)

 public void setReplyPosition(int pos)

Sets the position within the HSM Client reply.

Parameters:
 pos – position to set to; positions begin at 1, not 0

• setRequestData(char[])

 public void setRequestData(char[] data)

Sets the request data to provided character array.

Parameters:
 data – data to set to

• setRequestData(String)

 public void setRequestData(String data)

Sets the request data to provided String.

Parameters:
 data – data to set to

• setRequestData(StringBuffer)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

70

 public void setRequestData(StringBuffer data)

Sets the request data to provided StringBuffer.

Parameters:
 data – data to set to

• setRequestData(int, char[])

 public void setRequestData(int pos, char[] data)

Sets the request data, starting at the specified position, to the contents of the character array.

Parameters:
 data – data to set to
 pos – position to begin data replacement; positions begin at 1, not 0

• setRequestData(int, String)

 public void setRequestData(int pos, String data)

Sets the request data, starting at the specified position, to the contents of the String.

Parameters:
 data – data to set to
 pos – position to begin data replacement; positions begin at 1, not 0

• setRequestData(int, StringBuffer)

 public void setRequestData(int pos, StringBuffer data)

Sets the request data, starting at the specified position, to the contents of the StringBuffer.

Parameters:
 data – data to set to
 pos – position to begin data replacement; positions begin at 1, not 0

• setRequestData(int, int, char[])

 public void setRequestData(int pos, int length, char[] data)

Sets the request data, starting at the specified position and continuing for the specified length, to the contents of
the character array.

Parameters:
 data – data to set to
 length – length to replace
 pos – position to begin data replacement; positions begin at 1, not 0

• setRequestData(int, int, String)

 public void setRequestData(int pos, int length, String data)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

71

Sets the request data, starting at the specified position and continuing for the specified length, to the contents of
the String.

Parameters:
 data – data to set to
 length – length to replace

 pos – position to begin data replacement; positions begin at 1, not 0

• setRequestData(int, int, StringBuffer)

 public void setRequestData(int pos, int length,

StringBuffer data)

Sets the request data, starting at the specified position and continuing for the specified length, to the contents of
the StringBuffer.

Parameters:
 data – data to set to
 length – length to replace
 pos – position to begin data replacement; positions begin at 1, not 0

• setRequestDataNext(char[])

 public void setRequestDataNext(char[] data)

Sets the request data to provided character array beginning at current position.

Parameters:
 data – data to set to

• setRequestDataNext(String)

 public void setRequestDataNext(String data)

Sets the request data to provided String beginning at current position.

Parameters:
 data – data to set to

• setRequestDataNext(StringBuffer)

 public void setRequestDataNext(StringBuffer data)

Sets the request data to provided StringBuffer beginning at current position.

Parameters:
 data – data to set to

• setRequestDataNext(int, char[])

 public void setRequestDataNext(int length, char[] data)

Sets the request data, beginning at the current position and continuing for the specified length, to the contents of
the character array.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

72

Parameters:

data – data to set to
 length – length to replace

• setRequestDataNext(int, String)

 public void setRequestDataNext(int length, String data)

Sets the request data, beginning at the current position and continuing for the specified length, to the contents of
the String.

Parameters:

data – data to set to
 length – length to replace

• setRequestDataNext(int, StringBuffer)

 public void setRequestDataNext(int length, StringBuffer data)

Sets the request data, beginning at the current position and continuing for the specified length, to the contents of
the StringBuffer.

Parameters:

data – data to set to
 length – length to replace

• setRequestOpcode(String)

 public void setRequestOpcode(String opcode)

Sets the OPcode to the specified value.

 Parameters:
 opcode – OPcode to set to

• setRequestPosition(int)

 public void setRequestPosition(int pos)

Sets the position within the HSM Client request.

Parameters:
 pos – position to set to; positions begin at 1, not 0

Class com.businesslink.sgi.api.hsm.HsmData
public class HsmData
implements Cloneable

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

73

An HsmData object encapsulates data for an HSM request or reply, including the datablock and OPcode. HsmData
objects are generally used only internally to HSM and are wrapped by HsmClientRequest or HsmServerRequest as
appropriate.

Constructors

• HsmData

public HsmData()

 Creates an HsmData object.

• HsmData(int)

public HsmData(int initialSpace)

 Creates an HsmData object of the specified initial size.

 Parameters:
 initialSpace—the initial size of the HsmData object

Methods

• dump(PrintWriter, String)

public void dump(PrintWriter writer, String requestOrReply)

Logs transaction detail to the specified PrintWriter.

 Parameters:
 writer – PrintWriter to use
 requestOrReply – String to print (generally request or reply data)

• getChars()

public char[] getChars()

 Returns a character array containing data from the entire datablock.

• getChars(int)

public char[] getChars(int pos)

Returns a character array containing data from the HsmData datablock beginning at the specified position, to
the end of the datablock.

 Parameters:
 pos – position to begin read at; positions begin at 1, not 0

• getChars(int, int)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

74

public char[] getChars(int pos, int length)

Returns a character array containing data from the HsmData datablock, beginning at the specified position, and
continuing for the specified length.

 Parameters:
 pos – position to begin read at; positions begin at 1, not 0
 length – length to replace

• getCharsNext()

public char[] getCharsNext()

Returns a character array consisting of data from the HsmData datablock, beginning at the current position and
continuing to the end of the datablock.

• getCharsNext(int)

public char[] getCharsNext(int length)

Returns a character array containing data from the HsmData datablock, beginning at a current position, and
continuing for the specified length.

 Parameters:
 length – length to read

• getString()

public String getString()

 Returns a String containing data from the entire datablock.

• getString(int)

public String getString(int pos)

Returns a String containing data from the HsmData datablock beginning at the specified position, to the end of
the datablock.

 Parameters:
 pos – position to begin reading at; positions begin at 1, not 0

• getString(int, int)

public String getString(int pos, int length)

Returns a String containing data from the HsmData datablock, beginning at the specified position, and
continuing for the specified length.

 Parameters:
 pos – position to begin reading at; positions begin at 1, not 0
 length – length to read

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

75

• getStringBuffer()

public StringBuffer getStringBuffer()

 Returns a StringBuffer containing data from the entire datablock.

• getStringBuffer(int)

public StringBuffer getStringBuffer(int pos)

Returns a StringBuffer containing data from the HsmData datablock beginning at the specified position, to the
end of the datablock.

 Parameters:
 pos – position to begin reading at; positions begin at 1, not 0

• getStringBuffer(int, int)

public StringBuffer getStringBuffer(int pos, int length)

Returns a StringBuffer containing data from the HsmData datablock, beginning at the specified position, and
continuing for the specified length.

 Parameters:
 pos – position to begin reading at; positions begin at 1, not 0
 length – length to read

• getStringBufferNext()

public StringBuffer getStringBufferNext()

Returns a StringBuffer consisting of data from the HsmData datablock, beginning at the current position and
continuing to the end of the datablock.

• getStringBufferNext(int)

public StringBuffer getStringBufferNext(int length)

Returns a StringBuffer containing data from the HsmData datablock, beginning at a current position, and
continuing for the specified length.

 Parameters:
 length – length to read

• getStringNext()

 public String getStringNext()

Returns a String consisting of data from the HsmData datablock, beginning at the current position and
continuing to the end of the datablock.

• getStringNext(int)

public String getStringNext(int length)

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

76

Returns a String containing data from the HsmData datablock, beginning at a current position, and continuing
for the specified length.

 Parameters:
 length – length to read

• getOpcode()

public String getOpcode()

 Returns the current OPcode.

• getPosition()

public int getPosition()

 Returns the current position within the datablock..

• length()

public int length()

 Returns the length of the datablock within the HsmData object.

• remaining()

public int remaining()

Returns the length of data from the current datablock read position and the end of the datablock.

• reset()

public void reset()

 Resets the HsmData object, clearing all internal data.

• setData(char[])

public void setData(char[] data)

Sets the contents of the HsmData datablock to the contents of the specified character array.

 Parameters:
 data – array of characters to set data to

• setData(String)

public void setData(String data)

 Sets the contents of the HsmData datablock to the specified String value.

 Parameters:
 data – String to set data to

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

77

• setData(StringBuffer)

public void setData(StringBuffer data)

Sets the contents of the HsmData datablock to the contents of the specified StringBuffer.

 Parameters:
 data – StringBuffer to set data to

• setData(int, char[])

public void setData(int pos, char[] data)

Sets the contents of the HsmData datablock, beginning at the specified position, to the contents of the specified
character array.

 Parameters:
 data – array of characters to set data to
 pos – position to begin replacement at; positions begin at 1, not 0

• setData(int, String)

public void setData(int pos, String data)

Sets the contents of the HsmData datablock, beginning at the specified position, to the specified String value.

 Parameters:
 data – String to set data to
 pos – position to begin replacement at; positions begin at 1, not 0

• setData(int, StringBuffer)

public void setData(int pos, StringBuffer data)

Sets the contents of the HsmData datablock, beginning at the specified position, to the contents of the specified
StringBuffer.

 Parameters:
 data – StringBuffer to set data to
 pos – position to begin replacement at; positions begin at 1, not 0

• setData(int, int, char[])

public void setData(int pos, int length, char[] data)

Sets the contents of the HsmData datablock, beginning at the specified position, for the specified length, to the
contents of the specified character array.

 Parameters:
 data – array of characters to set data to
 pos – position to begin replacement at; positions begin at 1, not 0
 length – length to replace

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

78

• setData(int, int, String)

public void setData(int pos, int length, String data)

Sets the contents of the HsmData datablock, beginning at the specified position, for the specified length, to the
specified String value.

 Parameters:
 data – String to set data to
 pos – position to begin replacement at; positions begin at 1, not 0
 length – length to replace

• setData(int, int, StringBuffer)

public void setData(int pos, int length, StringBuffer data)

Sets the contents of the HsmData datablock, beginning at the specified position, for the specified length, to the
contents of the specified StringBuffer.

 Parameters:
 data – StringBuffer to set data to
 pos – position to begin replacement at; positions begin at 1, not 0
 length – length to replace

• setDataNext(char[])

public void setData(char[] data)

Sets the contents of the HsmData datablock, starting at the current position, to the contents of the specified
character array.

 Parameters:
 data – Character array to set data to

• setDataNext(String)

public void setData(String data)

Sets the contents of the HsmData datablock, starting at the current position, to the specified String value.

 Parameters:
 data – String to set data to

• setDataNext(StringBuffer)

public void setData(StringBuffer data)

Sets the contents of the HsmData datablock, starting at the current position, to the contents of the specified
StringBuffer.

 Parameters:
 data – StringBuffer to set data to

• setDataNext(int, char[])

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

79

public void setDataNext(int pos, char[] data)

Sets the contents of the HsmData datablock, starting at the current position, for the specified length, to the
contents of the specified character array.

 Parameters:
 data – array of characters to set data to
 pos – position to begin replacement at; positions begin at 1, not 0

• setDataNext(int, String)

public void setData(int pos, String data)

Sets the contents of the HsmData datablock, starting at the current position, for the specified length, to the
specified String value.

 Parameters:
 data – String to set data to
 pos – position to begin replacement at; positions begin at 1, not 0

• setDataNext(int, StringBuffer)

public void setData(int pos, StringBuffer data)

Sets the contents of the HsmData datablock, starting at the current position, for the specified length, to the
contents of the specified StringBuffer.

 Parameters:
 data – StringBuffer to set data to
 pos – position to begin replacement at; positions begin at 1, not 0

• setOpcode(String)

public void setOpcode(String opcode)

 Sets the OPcode.

 Parameters:
 opcode – String to set OPcode to; converted to uppercase before setting

• setPosition(int)

public int setPosition(int pos)

 Sets the current position within the datablock..

 Parameters:
 pos – position to set to; positions begin at 1, not 0

• unused()

public int unused()

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

80

 Returns the length of the unused portion of the datablock.

Class com.businesslink.sgi.api.hsm.HsmEscape
public class HsmEscape
extends Escape
implements Cloneable

An HsmEscape object is an internal unchecked exception thrown by the HSM subsystem when an error has occurred.
Typically this will be because an attempt to read or write a request or reply has specified a location beyond the maximum
data length

Constructors

• HsmEscape(int, String)

public HsmEscape(int code, String detail)

 Creates an HsmEscape object.

 Parameters:
 code – The escape code
 detail – Details for the escape

• HsmEscape(int, String, Object)

public HsmEscape(int code, String detail, Object relatedObject)

 Creates an HsmEscape object including the specified object.

 Parameters:
 code – The escape code
 detail – Details for the escape
 relatedObject – An object related to the escape

• HsmEscape(int, String, Object, Throwable)

public HsmEscape(int code, String detail, Object relatedObject,
Throwable initialThrowable)

 Creates an HsmEscape object including the specified object with an initial throwable object.

 Parameters:
 code – The escape code
 detail – Details for the escape
 relatedObject – An object related to the escape
 intialThrowable – The initial throwable object

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

81

Variables

• EDTAMAX

 Represents the state where the maximum data length has been exceeded

• EINVMTH

 Invalid method call; the method call is not supported and is illogical in this environment

Methods

• getErrorMessage()

public String getErrorMessage()

Class com.businesslink.sgi.api.hsm.HsmServerRequest
public class HsmServerRequest

An HsmServerRequest object encapsulates an HSM transaction from the perspective of the server. As such, it permits
the request to be read and the reply to be written.

Methods

• copyOfReply()

 public HsmData copyOfReply()

Returns an HsmData object which is a copy of the current reply. Typically an application would only be
interested in a copy of a reply in order to log it in an application specific manner

• dumpReply(PrintWriter)

 public void dumpReply(PrintWriter writer)

Dumps the reply data to the specified printwriter.

 Parameters:
 writer – PrintWriter to use

• dumpRequest(PrintWriter)

 public void dumpRequest(PrintWriter writer)

Dumps the request data to the specified printwriter.

 Parameters:

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

82

 writer – PrintWriter to use

• getReplyUnused()

 public int getReplyUnused()

 Returns the length of unused data in the reply.

• getReplyPosition()

 public int getReplyPosition()

 Returns the current read position of the reply.

• getRequestChars()

 public char[] getRequestChars()

 Returns an array of characters from the entire request.

• getRequestChars(int)

 public char[] getRequestChars(int pos)

 Returns an array of characters from the request beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0

• getRequestChars(int, int)

 public char[] getRequestChars(int pos, int length)

Returns an array of characters of the specified length from the request, beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0
 length – number of characters to return

• getRequestCharsNext()

 public char[] getRequestChars()

 Returns an array of characters from the current position to the end of the request data.

• getRequestCharsNext(int)

 public char[] getRequestChars(int length)

Returns an array of characters from the current position to in the request data for the specified length.

 Parameters:
 length – number of characters to return

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

83

• getRequestLength()

 public int getRequestLength()

 Returns the length of the HSM server request.

• getRequestOpcode()

 public String getRequestOpcode()

 Returns the OPcode of the HSM server request.

• getRequestPosition()

 public int getRequestPosition()

 Returns the current position in the HSM server request.

• getRequestRemaining()

 public int getRequestRemaining()

 Returns the remaining length of the HSM server request.

• getRequestString()

 public String getRequestString()

 Returns a String from the entire request.

• getRequestString(int)

 public String getRequestString(int pos)

 Returns a String from the request beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0

• getRequestString(int, int)

 public String getRequestString(int pos, int length)

Returns a String of the specified length from the request, beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0
 length – length of data to return

• getRequestStringBuffer()

 public StringBuffer getRequestStringBuffer()

 Returns a StringBuffer from the entire request.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

84

• getRequestStringBuffer(int)

 public StringBuffer getRequestStringBuffer(int pos)

 Returns a StringBuffer from the request beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0

• getRequestStringBuffer(int, int)

 public StringBuffer getRequestStringBuffer(int pos, int length)

Returns a StringBuffer of the specified length from the request, beginning at the specified position.

 Parameters:
 pos – position to begin from; positions begin at 1, not 0
 length – length of data to return

• getRequestStringBufferNext()

 public StringBuffer getRequestStringBuffer()

 Returns a StringBuffer from the current position to the end of the request data.

• getRequestStringBufferNext(int)

 public StringBuffer getRequestStringBuffer(int length)

Returns a StringBuffer from the current position to in the request data for the specified length.

 Parameters:
 length – length of data to return

• getRequestStringNext()

 public String getRequestString()

 Returns a String from the current position to the end of the request data.

• getRequestStringNext(int)

 public String getRequestString(int length)

Returns a String from the current position to in the request data for the specified length.

 Parameters:
 length – length of data to return

• getRequestTimeout()

 public int getRequestTimeout()

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

85

 Returns the timeout value of the HSM server request.

• resetReply()

 public void resetReply()

 Voids the current reply data.

• setReplyData(char[])

 public void setReplyData(char[] data

Sets the reply data to provided character array.

Parameters:
 Data -- data to set to

• setReplyData(String)

 public void setReplyData(String data)

Sets the reply data to provided String.

Parameters:
 data – data to set to

• setReplyData(StringBuffer)

 public void setReplyData(StringBuffer data)

Sets the reply data to provided StringBuffer.

Parameters:
 data – data to set to

• setReplyData(int, char[])

 public void setReplyData(int pos, char[] data)

Sets the reply data, starting at the specified position, to the contents of the character array.

Parameters:
 data – data to set to
 pos – position to begin data replacement; positions begin at 1, not 0

• setReplyData(int, String)

 public void setReplyData(int pos, String data)

Sets the reply data, starting at the specified position, to the contents of the String.

Parameters:
 data – data to set to

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

86

 pos – position to begin data replacement; positions begin at 1, not 0

• setReplyData(int, StringBuffer)

 public void setReplyData(int pos, StringBuffer data)

Sets the reply data, starting at the specified position, to the contents of the StringBuffer.

Parameters:
 data – data to set to
 pos – position to begin data replacement; positions begin at 1, not 0

• setReplyData(int, int, char[])

 public void setReplyData(int pos, int length, char[] data)

Sets the reply data, starting at the specified position and continuing for the specified length, to the contents of
the character array.

Parameters:
 data – data to set to
 length – length to replace
 pos – position to begin data replacement; positions begin at 1, not 0

• setReplyData(int, int, String)

 public void setReplyData(int pos, int length, String data)

Sets the reply data, starting at the specified position and continuing for the specified length, to the contents of
the String.

Parameters:
 data – data to set to
 length – length to replace

 pos – position to begin data replacement; positions begin at 1, not 0

• setReplyData(int, int, StringBuffer)

 public void setReplyData(int pos, int length, StringBuffer data)

Sets the reply data, starting at the specified position and continuing for the specified length, to the contents of
the StringBuffer.

Parameters:
 data – data to set to
 length – length to replace
 pos – position to begin data replacement; positions begin at 1, not 0

• setReplyDataNext(char[])

 public void setReplyDataNext(char[] data)

Sets the reply data to provided character array beginning at current position.

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

87

Parameters:
 data – data to set to

• setReplyDataNext(String)

 public void setReplyDataNext(String data)

Sets the reply data to provided String beginning at current position.

Parameters:
 data – data to set to

• setReplyDataNext(StringBuffer)

 public void setReplyDataNext(StringBuffer data)

Sets the reply data to provided StringBuffer beginning at current position.

Parameters:
 data – data to set to

• setReplyDataNext(int, char[])

 public void setReplyDataNext(int length, char[] data)

Sets the reply data, beginning at the current position and continuing for the specified length, to the contents of
the character array.

Parameters:

data – data to set to
 length – length to replace

• setReplyDataNext(int, String)

 public void setReplyDataNext(int length, String data)

Sets the reply data, beginning at the current position and continuing for the specified length, to the contents of
the String.

Parameters:

data – data to set to
 length – length to replace

• setReplyDataNext(int, StringBuffer)

 public void setReplyDataNext(int length, StringBuffer data)

Sets the reply data, beginning at the current position and continuing for the specified length, to the contents of
the StringBuffer.

Parameters:

data – data to set to
 length – length to replace

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

88

• setReplyOpcode(String)

 public void setReplyOpcode(String opcode)

Sets the opcode to the specified value.

 Parameters:
 opcode – opcode to set to

• setReplyPosition(int)

 public void setReplyPosition(int pos)

 Sets the current read position of the reply.

 Parameters:
 pos – position to set to; positions begin at 1, not 0

• setRequestPosition(int)

 public void setRequestPosition(int pos)

Sets the position within the HSM server request.

Parameters:
 pos – position to set to; positions begin at 1, not 0

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

89

Index

*

*PGM... 12
*PING .. 11, 13
*SITE_DIR .. 20
*STOP ... 11, 13

[

[BLOCK] ... 27, 29
[DO] ... 27, 29
[REPLY] .. 27, 28, 30, 52
[SERVER REQUEST]... 27, 28
[SUBMIT BUTTON]... 28, 29

<

<HSM NAME>.. 23
<HSMBLOCK>... 24, 27
<INPUT TYPE=>.. 52

5

5250 interface... 7

A

Additional HSM Administrative Features.. 60
Array elements ... 32
ASCII ... 13
Assign_Field_Value... 31

C

CHGPROH .. 44
Client.. 13
Client/Server .. 9
Communications programming.. 7
COMPATABILITY INTERFACE conversion.. 55
Condional [DO] ... 34, 35
Condition criteria ... 30
Conditions .. 30
Converting old servers ... 54
Converting older HSM servers... 54
CPYHFIL... 44

D

Data queue ... 9
DataBlock .. 13
DLTHFIL... 45
DLTPUSH ... 41

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

90

E

EBCDIC... 13
Embedded values ... 31
Error messages ... 32, 37, 38
Examples

Guest book ... 21
Stock inquiry.. 21
Visitor counter ... 19

Export_Field .. 32

F

Field values .. 31
File upload ... 42, 44
FILEINFO.. 45

G

GETITEM.. 10, 11, 14
GETLIST... 11, 14
GETPROH ... 46
Green screen... 7
Guest book ... 21

H

HSM groups
[BLOCK] ... 27
[DO] ... 27
[REPLY] .. 27
[SERVER REQUEST]... 27
[SUBMIT BUTTON]... 28

HSM keywords
[BLOCK] ... 29
[DO] ... 29
[REPLY] .. 28
[SERVER REQUEST]... 28
[SUBMIT BUTTON]... 29

HSM Resource File.. 27
HSMReply ... 10
HSMRequest .. 10
HTML .. 19
HTML client .. 9
HTML Keywords

<HSM BLOCK>.. 24
<HSM NAME>.. 23

I

ILE INTERFACE Conversion ... 57
INI.. 27

J

Java HSM Server Documentation.. 63

Strategi HSM Programmer’s Guide
Copyright © 2000, 2002 ADVANCED BusinessLink Corp.

91

L

Link URL values.. 36
LSTPUSH .. 40

M

Message elements .. 16
MOVHFIL ... 46

N

Name conventions.. 32

P

Pushfeed... 39, 40

R

RPG.. 9

S

SAMPLE ... 52
Screen scraper .. 7
Server ... 13
Server design.. 12
Server interface calls .. 16
Server logic .. 11
SETIFSAUT .. 47
SETPROH.. 48
Special values... 33, 35
Start_Length_Field .. 52
Stock inquiry.. 21
Strategi ... 7
Substitute_URL.. 36
Switching files ... 36
System requirements .. 8

V

Visitor counter ... 19

W

Work with HSM servers .. 12

	A Note to Readers of this Manual
	A Note to Readers of this Manual	3
	Overview
	Strategi High Speed Messaging
	HSM's Relevance to Your Business
	Client/Server Interaction
	HSM System Requirements
	AS/400 Requirements
	PC Requirements

	A Practical Example
	Combining Theory with a Working HSM Application
	Client/Server Interaction
	Server Logic

	Server Design
	Design Overview
	Receiving & Processing Client Requests
	Design Objectives
	HSM Programming Specification
	Server Message Elements & Interface Calls
	
	
	Bound Set 1, for C programs
	Bound Set 2, for ILE RPG/CLP programs
	External Set 1, for OPM Programs
	External Set 2, for old-specification OPM server programs

	Server Behavior on Error

	HTML Implementation
	Overview
	Visitor Counter Example
	Guest Book Example
	Stock Inquiry Example

	HTML Reference
	HTML Keywords
	<HSM NAME=field_name> </HSM>
	<HSMBLOCK NAME=block_name> </HSMBLOCK>

	SHTML & Server Side Includes
	.SHTML and .SHTM File Extensions
	Server Side Includes

	HSM Resource File Reference
	File Construct
	Groups
	[SERVER REQUEST]
	[REPLY]
	[DO]
	[BLOCK]
	[SUBMIT BUTTON]

	Keywords and Values by Group
	[SERVER REQUEST]
	[REPLY]
	[DO]
	[BLOCK]
	[SUBMIT BUTTON]

	Additional Keywords and Considerations
	Conditions
	Condition Criteria
	Explicitly Setting Field Values
	Exporting Embedded Values
	Array Elements
	Naming Conventions
	Automatic HSM Start Position
	Special Values
	INDEX Special Values
	HTTP Header Special Values
	Conditional [DO]
	Switching to Another File
	Values in Link URLs
	Returning HTTP Messages
	Error Messages
	HTTP Error redirection through a URL

	HSM File Upload & Pushfeed
	Strategi Pushfeed
	Push OPcodes (For Strategi Pushfeed)
	LSTPUSH
	DLTPUSH

	HSM File Upload
	File Operation and Property OpCodes (For HSM File Upload)
	CHGPROH
	CPYHFIL
	DLTHFIL
	FILEINFO
	GETPROH
	MOVHFIL
	SETIFSAUT
	SETPROH

	D
	Distributed HSM Servers (DHSM)

	Authentication & Security
	Setup Step 1: Define Peer System
	Setup Step 2: Configure Peer Relay Server
	Setup Step 3: Enabling Of Peer Services
	Setup Step 4: Modification of Server Authorities
	Other Topics
	Other Resources
	SGIEXAMPLE
	http://support.businesslink.com

	Additional Questions

	Appendix 1, Converting Old Servers
	Principle Benefits
	COMPATABILITY INTERFACE Conversion
	ILE INTERFACE Conversion

	Appendix 2, Additional HSM Administrative Features
	HSM Authorities
	HSM Performance Monitoring
	Customized Login Pages
	HSM Server Packaging & Installation Commands

	Appendix 3, Java HSM Server Documentation
	Class com.businesslink.sgi.api.hsm.HsmClient
	Constructors

	Class com.businesslink.sgi.api.hsm.HsmClientDetails
	Methods

	Class com.businesslink.sgi.api.hsm.HsmClientRequest
	Constructors
	Methods

	Class com.businesslink.sgi.api.hsm.HsmData
	Constructors
	Methods

	Class com.businesslink.sgi.api.hsm.HsmEscape
	Constructors
	Variables
	Methods

	Class com.businesslink.sgi.api.hsm.HsmServerRequest
	Methods

